File size: 5,560 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
"""Test Qdrant functionality."""
from typing import Callable, Optional

import pytest

from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.vectorstores import Qdrant
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings


@pytest.mark.parametrize(
    ["content_payload_key", "metadata_payload_key"],
    [
        (Qdrant.CONTENT_KEY, Qdrant.METADATA_KEY),
        ("foo", "bar"),
        (Qdrant.CONTENT_KEY, "bar"),
        ("foo", Qdrant.METADATA_KEY),
    ],
)
def test_qdrant(content_payload_key: str, metadata_payload_key: str) -> None:
    """Test end to end construction and search."""
    texts = ["foo", "bar", "baz"]
    docsearch = Qdrant.from_texts(
        texts,
        FakeEmbeddings(),
        location=":memory:",
        content_payload_key=content_payload_key,
        metadata_payload_key=metadata_payload_key,
    )
    output = docsearch.similarity_search("foo", k=1)
    assert output == [Document(page_content="foo")]


def test_qdrant_add_documents() -> None:
    """Test end to end construction and search."""
    texts = ["foo", "bar", "baz"]
    docsearch: Qdrant = Qdrant.from_texts(texts, FakeEmbeddings(), location=":memory:")

    new_texts = ["foobar", "foobaz"]
    docsearch.add_documents([Document(page_content=content) for content in new_texts])
    output = docsearch.similarity_search("foobar", k=1)
    # FakeEmbeddings return the same query embedding as the first document embedding
    # computed in `embedding.embed_documents`. Since embed_documents is called twice,
    # "foo" embedding is the same as "foobar" embedding
    assert output == [Document(page_content="foobar")] or output == [
        Document(page_content="foo")
    ]


@pytest.mark.parametrize(
    ["content_payload_key", "metadata_payload_key"],
    [
        (Qdrant.CONTENT_KEY, Qdrant.METADATA_KEY),
        ("test_content", "test_payload"),
        (Qdrant.CONTENT_KEY, "payload_test"),
        ("content_test", Qdrant.METADATA_KEY),
    ],
)
def test_qdrant_with_metadatas(
    content_payload_key: str, metadata_payload_key: str
) -> None:
    """Test end to end construction and search."""
    texts = ["foo", "bar", "baz"]
    metadatas = [{"page": i} for i in range(len(texts))]
    docsearch = Qdrant.from_texts(
        texts,
        FakeEmbeddings(),
        metadatas=metadatas,
        location=":memory:",
        content_payload_key=content_payload_key,
        metadata_payload_key=metadata_payload_key,
    )
    output = docsearch.similarity_search("foo", k=1)
    assert output == [Document(page_content="foo", metadata={"page": 0})]


def test_qdrant_similarity_search_filters() -> None:
    """Test end to end construction and search."""
    texts = ["foo", "bar", "baz"]
    metadatas = [
        {"page": i, "metadata": {"page": i + 1, "pages": [i + 2, -1]}}
        for i in range(len(texts))
    ]
    docsearch = Qdrant.from_texts(
        texts,
        FakeEmbeddings(),
        metadatas=metadatas,
        location=":memory:",
    )

    output = docsearch.similarity_search(
        "foo", k=1, filter={"page": 1, "metadata": {"page": 2, "pages": [3]}}
    )
    assert output == [
        Document(
            page_content="bar",
            metadata={"page": 1, "metadata": {"page": 2, "pages": [3, -1]}},
        )
    ]


@pytest.mark.parametrize(
    ["content_payload_key", "metadata_payload_key"],
    [
        (Qdrant.CONTENT_KEY, Qdrant.METADATA_KEY),
        ("test_content", "test_payload"),
        (Qdrant.CONTENT_KEY, "payload_test"),
        ("content_test", Qdrant.METADATA_KEY),
    ],
)
def test_qdrant_max_marginal_relevance_search(
    content_payload_key: str, metadata_payload_key: str
) -> None:
    """Test end to end construction and MRR search."""
    texts = ["foo", "bar", "baz"]
    metadatas = [{"page": i} for i in range(len(texts))]
    docsearch = Qdrant.from_texts(
        texts,
        FakeEmbeddings(),
        metadatas=metadatas,
        location=":memory:",
        content_payload_key=content_payload_key,
        metadata_payload_key=metadata_payload_key,
    )
    output = docsearch.max_marginal_relevance_search("foo", k=2, fetch_k=3)
    assert output == [
        Document(page_content="foo", metadata={"page": 0}),
        Document(page_content="bar", metadata={"page": 1}),
    ]


@pytest.mark.parametrize(
    ["embeddings", "embedding_function"],
    [
        (FakeEmbeddings(), None),
        (FakeEmbeddings().embed_query, None),
        (None, FakeEmbeddings().embed_query),
    ],
)
def test_qdrant_embedding_interface(
    embeddings: Optional[Embeddings], embedding_function: Optional[Callable]
) -> None:
    from qdrant_client import QdrantClient

    client = QdrantClient(":memory:")
    collection_name = "test"

    Qdrant(
        client,
        collection_name,
        embeddings=embeddings,
        embedding_function=embedding_function,
    )


@pytest.mark.parametrize(
    ["embeddings", "embedding_function"],
    [
        (FakeEmbeddings(), FakeEmbeddings().embed_query),
        (None, None),
    ],
)
def test_qdrant_embedding_interface_raises(
    embeddings: Optional[Embeddings], embedding_function: Optional[Callable]
) -> None:
    from qdrant_client import QdrantClient

    client = QdrantClient(":memory:")
    collection_name = "test"

    with pytest.raises(ValueError):
        Qdrant(
            client,
            collection_name,
            embeddings=embeddings,
            embedding_function=embedding_function,
        )