File size: 2,881 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
"""Test Milvus functionality."""
from typing import List, Optional

from langchain.docstore.document import Document
from langchain.vectorstores import Milvus
from tests.integration_tests.vectorstores.fake_embeddings import (
    FakeEmbeddings,
    fake_texts,
)


def _milvus_from_texts(
    metadatas: Optional[List[dict]] = None, drop: bool = True
) -> Milvus:
    return Milvus.from_texts(
        fake_texts,
        FakeEmbeddings(),
        metadatas=metadatas,
        connection_args={"host": "127.0.0.1", "port": "19530"},
        drop_old=drop,
    )


def test_milvus() -> None:
    """Test end to end construction and search."""
    docsearch = _milvus_from_texts()
    output = docsearch.similarity_search("foo", k=1)
    assert output == [Document(page_content="foo")]


def test_milvus_with_score() -> None:
    """Test end to end construction and search with scores and IDs."""
    texts = ["foo", "bar", "baz"]
    metadatas = [{"page": i} for i in range(len(texts))]
    docsearch = _milvus_from_texts(metadatas=metadatas)
    output = docsearch.similarity_search_with_score("foo", k=3)
    docs = [o[0] for o in output]
    scores = [o[1] for o in output]
    assert docs == [
        Document(page_content="foo", metadata={"page": 0}),
        Document(page_content="bar", metadata={"page": 1}),
        Document(page_content="baz", metadata={"page": 2}),
    ]
    assert scores[0] < scores[1] < scores[2]


def test_milvus_max_marginal_relevance_search() -> None:
    """Test end to end construction and MRR search."""
    texts = ["foo", "bar", "baz"]
    metadatas = [{"page": i} for i in range(len(texts))]
    docsearch = _milvus_from_texts(metadatas=metadatas)
    output = docsearch.max_marginal_relevance_search("foo", k=2, fetch_k=3)
    assert output == [
        Document(page_content="foo", metadata={"page": 0}),
        Document(page_content="baz", metadata={"page": 2}),
    ]


def test_milvus_add_extra() -> None:
    """Test end to end construction and MRR search."""
    texts = ["foo", "bar", "baz"]
    metadatas = [{"page": i} for i in range(len(texts))]
    docsearch = _milvus_from_texts(metadatas=metadatas)

    docsearch.add_texts(texts, metadatas)

    output = docsearch.similarity_search("foo", k=10)
    assert len(output) == 6


def test_milvus_no_drop() -> None:
    """Test end to end construction and MRR search."""
    texts = ["foo", "bar", "baz"]
    metadatas = [{"page": i} for i in range(len(texts))]
    docsearch = _milvus_from_texts(metadatas=metadatas)
    del docsearch

    docsearch = _milvus_from_texts(metadatas=metadatas, drop=False)

    output = docsearch.similarity_search("foo", k=10)
    assert len(output) == 6


# if __name__ == "__main__":
#     test_milvus()
#     test_milvus_with_score()
#     test_milvus_max_marginal_relevance_search()
#     test_milvus_add_extra()
#     test_milvus_no_drop()