File size: 5,742 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
"""Test Deep Lake functionality."""
import deeplake
import pytest
from pytest import FixtureRequest

from langchain.docstore.document import Document
from langchain.vectorstores import DeepLake
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings


@pytest.fixture
def deeplake_datastore() -> DeepLake:
    texts = ["foo", "bar", "baz"]
    metadatas = [{"page": str(i)} for i in range(len(texts))]
    docsearch = DeepLake.from_texts(
        dataset_path="mem://test_path",
        texts=texts,
        metadatas=metadatas,
        embedding=FakeEmbeddings(),
    )
    return docsearch


@pytest.fixture(params=["L1", "L2", "max", "cos"])
def distance_metric(request: FixtureRequest) -> str:
    return request.param


def test_deeplake() -> None:
    """Test end to end construction and search."""
    texts = ["foo", "bar", "baz"]
    docsearch = DeepLake.from_texts(
        dataset_path="mem://test_path", texts=texts, embedding=FakeEmbeddings()
    )
    output = docsearch.similarity_search("foo", k=1)
    assert output == [Document(page_content="foo")]


def test_deeplake_with_metadatas() -> None:
    """Test end to end construction and search."""
    texts = ["foo", "bar", "baz"]
    metadatas = [{"page": str(i)} for i in range(len(texts))]
    docsearch = DeepLake.from_texts(
        dataset_path="mem://test_path",
        texts=texts,
        embedding=FakeEmbeddings(),
        metadatas=metadatas,
    )
    output = docsearch.similarity_search("foo", k=1)
    assert output == [Document(page_content="foo", metadata={"page": "0"})]


def test_deeplakewith_persistence() -> None:
    """Test end to end construction and search, with persistence."""
    dataset_path = "./tests/persist_dir"
    if deeplake.exists(dataset_path):
        deeplake.delete(dataset_path)

    texts = ["foo", "bar", "baz"]
    docsearch = DeepLake.from_texts(
        dataset_path=dataset_path,
        texts=texts,
        embedding=FakeEmbeddings(),
    )

    output = docsearch.similarity_search("foo", k=1)
    assert output == [Document(page_content="foo")]

    docsearch.persist()

    # Get a new VectorStore from the persisted directory
    docsearch = DeepLake(
        dataset_path=dataset_path,
        embedding_function=FakeEmbeddings(),
    )
    output = docsearch.similarity_search("foo", k=1)

    # Clean up
    docsearch.delete_dataset()

    # Persist doesn't need to be called again
    # Data will be automatically persisted on object deletion
    # Or on program exit


def test_similarity_search(deeplake_datastore: DeepLake, distance_metric: str) -> None:
    """Test similarity search."""
    output = deeplake_datastore.similarity_search(
        "foo", k=1, distance_metric=distance_metric
    )
    assert output == [Document(page_content="foo", metadata={"page": "0"})]
    deeplake_datastore.delete_dataset()


def test_similarity_search_by_vector(
    deeplake_datastore: DeepLake, distance_metric: str
) -> None:
    """Test similarity search by vector."""
    embeddings = FakeEmbeddings().embed_documents(["foo", "bar", "baz"])
    output = deeplake_datastore.similarity_search_by_vector(
        embeddings[1], k=1, distance_metric=distance_metric
    )
    assert output == [Document(page_content="bar", metadata={"page": "1"})]
    deeplake_datastore.delete_dataset()


def test_similarity_search_with_score(
    deeplake_datastore: DeepLake, distance_metric: str
) -> None:
    """Test similarity search with score."""
    output, score = deeplake_datastore.similarity_search_with_score(
        "foo", k=1, distance_metric=distance_metric
    )[0]
    assert output == Document(page_content="foo", metadata={"page": "0"})
    if distance_metric == "cos":
        assert score == 1.0
    else:
        assert score == 0.0
    deeplake_datastore.delete_dataset()


def test_similarity_search_with_filter(
    deeplake_datastore: DeepLake, distance_metric: str
) -> None:
    """Test similarity search."""

    output = deeplake_datastore.similarity_search(
        "foo", k=1, distance_metric=distance_metric, filter={"page": "1"}
    )
    assert output == [Document(page_content="bar", metadata={"page": "1"})]
    deeplake_datastore.delete_dataset()


def test_max_marginal_relevance_search(deeplake_datastore: DeepLake) -> None:
    """Test max marginal relevance search by vector."""

    output = deeplake_datastore.max_marginal_relevance_search("foo", k=1, fetch_k=2)

    assert output == [Document(page_content="foo", metadata={"page": "0"})]

    embeddings = FakeEmbeddings().embed_documents(["foo", "bar", "baz"])
    output = deeplake_datastore.max_marginal_relevance_search_by_vector(
        embeddings[0], k=1, fetch_k=2
    )

    assert output == [Document(page_content="foo", metadata={"page": "0"})]
    deeplake_datastore.delete_dataset()


def test_delete_dataset_by_ids(deeplake_datastore: DeepLake) -> None:
    """Test delete dataset."""
    id = deeplake_datastore.ds.ids.data()["value"][0]
    deeplake_datastore.delete(ids=[id])
    assert deeplake_datastore.similarity_search("foo", k=1, filter={"page": "0"}) == []
    assert len(deeplake_datastore.ds) == 2

    deeplake_datastore.delete_dataset()


def test_delete_dataset_by_filter(deeplake_datastore: DeepLake) -> None:
    """Test delete dataset."""
    deeplake_datastore.delete(filter={"page": "1"})
    assert deeplake_datastore.similarity_search("bar", k=1, filter={"page": "1"}) == []
    assert len(deeplake_datastore.ds) == 2

    deeplake_datastore.delete_dataset()


def test_delete_by_path(deeplake_datastore: DeepLake) -> None:
    """Test delete dataset."""
    path = deeplake_datastore.dataset_path
    DeepLake.force_delete_by_path(path)
    assert not deeplake.exists(path)