File size: 4,873 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Question answering over a group chat messages\n",
    "In this tutorial, we are going to use Langchain + Deep Lake with GPT4 to semantically search and ask questions over a group chat.\n",
    "\n",
    "View a working demo [here](https://twitter.com/thisissukh_/status/1647223328363679745)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 1. Install required packages"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!python3 -m pip install --upgrade langchain deeplake openai tiktoken"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2. Add API keys"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import getpass\n",
    "from langchain.document_loaders import PyPDFLoader, TextLoader\n",
    "from langchain.embeddings.openai import OpenAIEmbeddings\n",
    "from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter\n",
    "from langchain.vectorstores import DeepLake\n",
    "from langchain.chains import ConversationalRetrievalChain, RetrievalQA\n",
    "from langchain.chat_models import ChatOpenAI\n",
    "from langchain.llms import OpenAI\n",
    "\n",
    "os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:')\n",
    "os.environ['ACTIVELOOP_TOKEN'] = getpass.getpass('Activeloop Token:')\n",
    "os.environ['ACTIVELOOP_ORG'] = getpass.getpass('Activeloop Org:')\n",
    "\n",
    "org = os.environ['ACTIVELOOP_ORG']\n",
    "embeddings = OpenAIEmbeddings()\n",
    "\n",
    "dataset_path = 'hub://' + org + '/data'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "\n",
    "## 2. Create sample data"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can generate a sample group chat conversation using ChatGPT with this prompt:\n",
    "\n",
    "```\n",
    "Generate a group chat conversation with three friends talking about their day, referencing real places and fictional names. Make it funny and as detailed as possible.\n",
    "```\n",
    "\n",
    "I've already generated such a chat in `messages.txt`. We can keep it simple and use this for our example.\n",
    "\n",
    "## 3. Ingest chat embeddings\n",
    "\n",
    "We load the messages in the text file, chunk and upload to ActiveLoop Vector store."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open(\"messages.txt\") as f:\n",
    "    state_of_the_union = f.read()\n",
    "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
    "pages = text_splitter.split_text(state_of_the_union)\n",
    "\n",
    "text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)\n",
    "texts = text_splitter.create_documents(pages)\n",
    "\n",
    "print (texts)\n",
    "\n",
    "dataset_path = 'hub://'+org+'/data'\n",
    "embeddings = OpenAIEmbeddings()\n",
    "db = DeepLake.from_documents(texts, embeddings, dataset_path=dataset_path, overwrite=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 4. Ask questions\n",
    "\n",
    "Now we can ask a question and get an answer back with a semantic search:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "db = DeepLake(dataset_path=dataset_path, read_only=True, embedding_function=embeddings)\n",
    "\n",
    "retriever = db.as_retriever()\n",
    "retriever.search_kwargs['distance_metric'] = 'cos'\n",
    "retriever.search_kwargs['k'] = 4\n",
    "\n",
    "qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type=\"stuff\", retriever=retriever, return_source_documents=False)\n",
    "\n",
    "# What was the restaurant the group was talking about called?\n",
    "query = input(\"Enter query:\")\n",
    "\n",
    "# The Hungry Lobster\n",
    "ans = qa({\"query\": query})\n",
    "\n",
    "print(ans)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}