Spaces:
Sleeping
Sleeping
File size: 12,255 Bytes
cfd3735 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
{
"cells": [
{
"cell_type": "markdown",
"id": "480b7cf8",
"metadata": {},
"source": [
"# Question Answering\n",
"\n",
"This notebook covers how to evaluate generic question answering problems. This is a situation where you have an example containing a question and its corresponding ground truth answer, and you want to measure how well the language model does at answering those questions."
]
},
{
"cell_type": "markdown",
"id": "78e3023b",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"For demonstration purposes, we will just evaluate a simple question answering system that only evaluates the model's internal knowledge. Please see other notebooks for examples where it evaluates how the model does at question answering over data not present in what the model was trained on."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "96710d50",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "e33ccf00",
"metadata": {},
"outputs": [],
"source": [
"prompt = PromptTemplate(template=\"Question: {question}\\nAnswer:\", input_variables=[\"question\"])"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "172d993a",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(model_name=\"text-davinci-003\", temperature=0)\n",
"chain = LLMChain(llm=llm, prompt=prompt)"
]
},
{
"cell_type": "markdown",
"id": "0c584440",
"metadata": {},
"source": [
"## Examples\n",
"For this purpose, we will just use two simple hardcoded examples, but see other notebooks for tips on how to get and/or generate these examples."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "87de1d84",
"metadata": {},
"outputs": [],
"source": [
"examples = [\n",
" {\n",
" \"question\": \"Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?\",\n",
" \"answer\": \"11\"\n",
" },\n",
" {\n",
" \"question\": 'Is the following sentence plausible? \"Joao Moutinho caught the screen pass in the NFC championship.\"',\n",
" \"answer\": \"No\"\n",
" }\n",
"]"
]
},
{
"cell_type": "markdown",
"id": "143b1155",
"metadata": {},
"source": [
"## Predictions\n",
"\n",
"We can now make and inspect the predictions for these questions."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "c7bd809c",
"metadata": {},
"outputs": [],
"source": [
"predictions = chain.apply(examples)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "f06dceab",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'text': ' 11 tennis balls'},\n",
" {'text': ' No, this sentence is not plausible. Joao Moutinho is a professional soccer player, not an American football player, so it is not likely that he would be catching a screen pass in the NFC championship.'}]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predictions"
]
},
{
"cell_type": "markdown",
"id": "45cc2f9d",
"metadata": {},
"source": [
"## Evaluation\n",
"\n",
"We can see that if we tried to just do exact match on the answer answers (`11` and `No`) they would not match what the language model answered. However, semantically the language model is correct in both cases. In order to account for this, we can use a language model itself to evaluate the answers."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "0cacc65a",
"metadata": {},
"outputs": [],
"source": [
"from langchain.evaluation.qa import QAEvalChain"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "5aa6cd65",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)\n",
"eval_chain = QAEvalChain.from_llm(llm)\n",
"graded_outputs = eval_chain.evaluate(examples, predictions, question_key=\"question\", prediction_key=\"text\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "63780020",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Example 0:\n",
"Question: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?\n",
"Real Answer: 11\n",
"Predicted Answer: 11 tennis balls\n",
"Predicted Grade: CORRECT\n",
"\n",
"Example 1:\n",
"Question: Is the following sentence plausible? \"Joao Moutinho caught the screen pass in the NFC championship.\"\n",
"Real Answer: No\n",
"Predicted Answer: No, this sentence is not plausible. Joao Moutinho is a professional soccer player, not an American football player, so it is not likely that he would be catching a screen pass in the NFC championship.\n",
"Predicted Grade: CORRECT\n",
"\n"
]
}
],
"source": [
"for i, eg in enumerate(examples):\n",
" print(f\"Example {i}:\")\n",
" print(\"Question: \" + eg['question'])\n",
" print(\"Real Answer: \" + eg['answer'])\n",
" print(\"Predicted Answer: \" + predictions[i]['text'])\n",
" print(\"Predicted Grade: \" + graded_outputs[i]['text'])\n",
" print()"
]
},
{
"cell_type": "markdown",
"id": "782ae8c8",
"metadata": {},
"source": [
"## Customize Prompt\n",
"\n",
"You can also customize the prompt that is used. Here is an example prompting it using a score from 0 to 10.\n",
"The custom prompt requires 3 input variables: \"query\", \"answer\" and \"result\". Where \"query\" is the question, \"answer\" is the ground truth answer, and \"result\" is the predicted answer."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "153425c4",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts.prompt import PromptTemplate\n",
"\n",
"_PROMPT_TEMPLATE = \"\"\"You are an expert professor specialized in grading students' answers to questions.\n",
"You are grading the following question:\n",
"{query}\n",
"Here is the real answer:\n",
"{answer}\n",
"You are grading the following predicted answer:\n",
"{result}\n",
"What grade do you give from 0 to 10, where 0 is the lowest (very low similarity) and 10 is the highest (very high similarity)?\n",
"\"\"\"\n",
"\n",
"PROMPT = PromptTemplate(input_variables=[\"query\", \"answer\", \"result\"], template=_PROMPT_TEMPLATE)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0a3b0fb7",
"metadata": {},
"outputs": [],
"source": [
"evalchain = QAEvalChain.from_llm(llm=llm,prompt=PROMPT)\n",
"evalchain.evaluate(examples, predictions, question_key=\"question\", answer_key=\"answer\", prediction_key=\"text\")"
]
},
{
"cell_type": "markdown",
"id": "cb1cf335",
"metadata": {},
"source": [
"## Evaluation without Ground Truth\n",
"Its possible to evaluate question answering systems without ground truth. You would need a `\"context\"` input that reflects what the information the LLM uses to answer the question. This context can be obtained by any retreival system. Here's an example of how it works:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6c59293f",
"metadata": {},
"outputs": [],
"source": [
"context_examples = [\n",
" {\n",
" \"question\": \"How old am I?\",\n",
" \"context\": \"I am 30 years old. I live in New York and take the train to work everyday.\",\n",
" },\n",
" {\n",
" \"question\": 'Who won the NFC championship game in 2023?\"',\n",
" \"context\": \"NFC Championship Game 2023: Philadelphia Eagles 31, San Francisco 49ers 7\"\n",
" }\n",
"]\n",
"QA_PROMPT = \"Answer the question based on the context\\nContext:{context}\\nQuestion:{question}\\nAnswer:\"\n",
"template = PromptTemplate(input_variables=[\"context\", \"question\"], template=QA_PROMPT)\n",
"qa_chain = LLMChain(llm=llm, prompt=template)\n",
"predictions = qa_chain.apply(context_examples)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "e500d0cc",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'text': 'You are 30 years old.'},\n",
" {'text': ' The Philadelphia Eagles won the NFC championship game in 2023.'}]"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predictions"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "6d8cbc1d",
"metadata": {},
"outputs": [],
"source": [
"from langchain.evaluation.qa import ContextQAEvalChain\n",
"eval_chain = ContextQAEvalChain.from_llm(llm)\n",
"graded_outputs = eval_chain.evaluate(context_examples, predictions, question_key=\"question\", prediction_key=\"text\")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "6c5262d0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'text': ' CORRECT'}, {'text': ' CORRECT'}]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"graded_outputs"
]
},
{
"cell_type": "markdown",
"id": "aaa61f0c",
"metadata": {},
"source": [
"## Comparing to other evaluation metrics\n",
"We can compare the evaluation results we get to other common evaluation metrics. To do this, let's load some evaluation metrics from HuggingFace's `evaluate` package."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "d851453b",
"metadata": {},
"outputs": [],
"source": [
"# Some data munging to get the examples in the right format\n",
"for i, eg in enumerate(examples):\n",
" eg['id'] = str(i)\n",
" eg['answers'] = {\"text\": [eg['answer']], \"answer_start\": [0]}\n",
" predictions[i]['id'] = str(i)\n",
" predictions[i]['prediction_text'] = predictions[i]['text']\n",
"\n",
"for p in predictions:\n",
" del p['text']\n",
"\n",
"new_examples = examples.copy()\n",
"for eg in new_examples:\n",
" del eg ['question']\n",
" del eg['answer']"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "c38eb3e9",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"from evaluate import load\n",
"squad_metric = load(\"squad\")\n",
"results = squad_metric.compute(\n",
" references=new_examples,\n",
" predictions=predictions,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "07d68f85",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'exact_match': 0.0, 'f1': 28.125}"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"results"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3b775150",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
},
"vscode": {
"interpreter": {
"hash": "53f3bc57609c7a84333bb558594977aa5b4026b1d6070b93987956689e367341"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|