Spaces:
Sleeping
Sleeping
File size: 26,975 Bytes
cfd3735 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Use LangChain, GPT and Deep Lake to work with code base\n",
"In this tutorial, we are going to use Langchain + Deep Lake with GPT to analyze the code base of the LangChain itself. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Design"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. Prepare data:\n",
" 1. Upload all python project files using the `langchain.document_loaders.TextLoader`. We will call these files the **documents**.\n",
" 2. Split all documents to chunks using the `langchain.text_splitter.CharacterTextSplitter`.\n",
" 3. Embed chunks and upload them into the DeepLake using `langchain.embeddings.openai.OpenAIEmbeddings` and `langchain.vectorstores.DeepLake`\n",
"2. Question-Answering:\n",
" 1. Build a chain from `langchain.chat_models.ChatOpenAI` and `langchain.chains.ConversationalRetrievalChain`\n",
" 2. Prepare questions.\n",
" 3. Get answers running the chain.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Implementation"
]
},
{
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"### Integration preparations"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We need to set up keys for external services and install necessary python libraries."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"#!python3 -m pip install --upgrade langchain deeplake openai"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Set up OpenAI embeddings, Deep Lake multi-modal vector store api and authenticate. \n",
"\n",
"For full documentation of Deep Lake please follow https://docs.activeloop.ai/ and API reference https://docs.deeplake.ai/en/latest/"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" 路路路路路路路路\n"
]
}
],
"source": [
"import os\n",
"from getpass import getpass\n",
"\n",
"os.environ['OPENAI_API_KEY'] = getpass()\n",
"# Please manually enter OpenAI Key"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Authenticate into Deep Lake if you want to create your own dataset and publish it. You can get an API key from the platform at [app.activeloop.ai](https://app.activeloop.ai)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" 路路路路路路路路\n"
]
}
],
"source": [
"os.environ['ACTIVELOOP_TOKEN'] = getpass.getpass('Activeloop Token:')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare data "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Load all repository files. Here we assume this notebook is downloaded as the part of the langchain fork and we work with the python files of the `langchain` repo.\n",
"\n",
"If you want to use files from different repo, change `root_dir` to the root dir of your repo."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1147\n"
]
}
],
"source": [
"from langchain.document_loaders import TextLoader\n",
"\n",
"root_dir = '../../../..'\n",
"\n",
"docs = []\n",
"for dirpath, dirnames, filenames in os.walk(root_dir):\n",
" for file in filenames:\n",
" if file.endswith('.py') and '/.venv/' not in dirpath:\n",
" try: \n",
" loader = TextLoader(os.path.join(dirpath, file), encoding='utf-8')\n",
" docs.extend(loader.load_and_split())\n",
" except Exception as e: \n",
" pass\n",
"print(f'{len(docs)}')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then, chunk the files"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Created a chunk of size 1620, which is longer than the specified 1000\n",
"Created a chunk of size 1213, which is longer than the specified 1000\n",
"Created a chunk of size 1263, which is longer than the specified 1000\n",
"Created a chunk of size 1448, which is longer than the specified 1000\n",
"Created a chunk of size 1120, which is longer than the specified 1000\n",
"Created a chunk of size 1148, which is longer than the specified 1000\n",
"Created a chunk of size 1826, which is longer than the specified 1000\n",
"Created a chunk of size 1260, which is longer than the specified 1000\n",
"Created a chunk of size 1195, which is longer than the specified 1000\n",
"Created a chunk of size 2147, which is longer than the specified 1000\n",
"Created a chunk of size 1410, which is longer than the specified 1000\n",
"Created a chunk of size 1269, which is longer than the specified 1000\n",
"Created a chunk of size 1030, which is longer than the specified 1000\n",
"Created a chunk of size 1046, which is longer than the specified 1000\n",
"Created a chunk of size 1024, which is longer than the specified 1000\n",
"Created a chunk of size 1026, which is longer than the specified 1000\n",
"Created a chunk of size 1285, which is longer than the specified 1000\n",
"Created a chunk of size 1370, which is longer than the specified 1000\n",
"Created a chunk of size 1031, which is longer than the specified 1000\n",
"Created a chunk of size 1999, which is longer than the specified 1000\n",
"Created a chunk of size 1029, which is longer than the specified 1000\n",
"Created a chunk of size 1120, which is longer than the specified 1000\n",
"Created a chunk of size 1033, which is longer than the specified 1000\n",
"Created a chunk of size 1143, which is longer than the specified 1000\n",
"Created a chunk of size 1416, which is longer than the specified 1000\n",
"Created a chunk of size 2482, which is longer than the specified 1000\n",
"Created a chunk of size 1890, which is longer than the specified 1000\n",
"Created a chunk of size 1418, which is longer than the specified 1000\n",
"Created a chunk of size 1848, which is longer than the specified 1000\n",
"Created a chunk of size 1069, which is longer than the specified 1000\n",
"Created a chunk of size 2369, which is longer than the specified 1000\n",
"Created a chunk of size 1045, which is longer than the specified 1000\n",
"Created a chunk of size 1501, which is longer than the specified 1000\n",
"Created a chunk of size 1208, which is longer than the specified 1000\n",
"Created a chunk of size 1950, which is longer than the specified 1000\n",
"Created a chunk of size 1283, which is longer than the specified 1000\n",
"Created a chunk of size 1414, which is longer than the specified 1000\n",
"Created a chunk of size 1304, which is longer than the specified 1000\n",
"Created a chunk of size 1224, which is longer than the specified 1000\n",
"Created a chunk of size 1060, which is longer than the specified 1000\n",
"Created a chunk of size 2461, which is longer than the specified 1000\n",
"Created a chunk of size 1099, which is longer than the specified 1000\n",
"Created a chunk of size 1178, which is longer than the specified 1000\n",
"Created a chunk of size 1449, which is longer than the specified 1000\n",
"Created a chunk of size 1345, which is longer than the specified 1000\n",
"Created a chunk of size 3359, which is longer than the specified 1000\n",
"Created a chunk of size 2248, which is longer than the specified 1000\n",
"Created a chunk of size 1589, which is longer than the specified 1000\n",
"Created a chunk of size 2104, which is longer than the specified 1000\n",
"Created a chunk of size 1505, which is longer than the specified 1000\n",
"Created a chunk of size 1387, which is longer than the specified 1000\n",
"Created a chunk of size 1215, which is longer than the specified 1000\n",
"Created a chunk of size 1240, which is longer than the specified 1000\n",
"Created a chunk of size 1635, which is longer than the specified 1000\n",
"Created a chunk of size 1075, which is longer than the specified 1000\n",
"Created a chunk of size 2180, which is longer than the specified 1000\n",
"Created a chunk of size 1791, which is longer than the specified 1000\n",
"Created a chunk of size 1555, which is longer than the specified 1000\n",
"Created a chunk of size 1082, which is longer than the specified 1000\n",
"Created a chunk of size 1225, which is longer than the specified 1000\n",
"Created a chunk of size 1287, which is longer than the specified 1000\n",
"Created a chunk of size 1085, which is longer than the specified 1000\n",
"Created a chunk of size 1117, which is longer than the specified 1000\n",
"Created a chunk of size 1966, which is longer than the specified 1000\n",
"Created a chunk of size 1150, which is longer than the specified 1000\n",
"Created a chunk of size 1285, which is longer than the specified 1000\n",
"Created a chunk of size 1150, which is longer than the specified 1000\n",
"Created a chunk of size 1585, which is longer than the specified 1000\n",
"Created a chunk of size 1208, which is longer than the specified 1000\n",
"Created a chunk of size 1267, which is longer than the specified 1000\n",
"Created a chunk of size 1542, which is longer than the specified 1000\n",
"Created a chunk of size 1183, which is longer than the specified 1000\n",
"Created a chunk of size 2424, which is longer than the specified 1000\n",
"Created a chunk of size 1017, which is longer than the specified 1000\n",
"Created a chunk of size 1304, which is longer than the specified 1000\n",
"Created a chunk of size 1379, which is longer than the specified 1000\n",
"Created a chunk of size 1324, which is longer than the specified 1000\n",
"Created a chunk of size 1205, which is longer than the specified 1000\n",
"Created a chunk of size 1056, which is longer than the specified 1000\n",
"Created a chunk of size 1195, which is longer than the specified 1000\n",
"Created a chunk of size 3608, which is longer than the specified 1000\n",
"Created a chunk of size 1058, which is longer than the specified 1000\n",
"Created a chunk of size 1075, which is longer than the specified 1000\n",
"Created a chunk of size 1217, which is longer than the specified 1000\n",
"Created a chunk of size 1109, which is longer than the specified 1000\n",
"Created a chunk of size 1440, which is longer than the specified 1000\n",
"Created a chunk of size 1046, which is longer than the specified 1000\n",
"Created a chunk of size 1220, which is longer than the specified 1000\n",
"Created a chunk of size 1403, which is longer than the specified 1000\n",
"Created a chunk of size 1241, which is longer than the specified 1000\n",
"Created a chunk of size 1427, which is longer than the specified 1000\n",
"Created a chunk of size 1049, which is longer than the specified 1000\n",
"Created a chunk of size 1580, which is longer than the specified 1000\n",
"Created a chunk of size 1565, which is longer than the specified 1000\n",
"Created a chunk of size 1131, which is longer than the specified 1000\n",
"Created a chunk of size 1425, which is longer than the specified 1000\n",
"Created a chunk of size 1054, which is longer than the specified 1000\n",
"Created a chunk of size 1027, which is longer than the specified 1000\n",
"Created a chunk of size 2559, which is longer than the specified 1000\n",
"Created a chunk of size 1028, which is longer than the specified 1000\n",
"Created a chunk of size 1382, which is longer than the specified 1000\n",
"Created a chunk of size 1888, which is longer than the specified 1000\n",
"Created a chunk of size 1475, which is longer than the specified 1000\n",
"Created a chunk of size 1652, which is longer than the specified 1000\n",
"Created a chunk of size 1891, which is longer than the specified 1000\n",
"Created a chunk of size 1899, which is longer than the specified 1000\n",
"Created a chunk of size 1021, which is longer than the specified 1000\n",
"Created a chunk of size 1085, which is longer than the specified 1000\n",
"Created a chunk of size 1854, which is longer than the specified 1000\n",
"Created a chunk of size 1672, which is longer than the specified 1000\n",
"Created a chunk of size 2537, which is longer than the specified 1000\n",
"Created a chunk of size 1251, which is longer than the specified 1000\n",
"Created a chunk of size 1734, which is longer than the specified 1000\n",
"Created a chunk of size 1642, which is longer than the specified 1000\n",
"Created a chunk of size 1376, which is longer than the specified 1000\n",
"Created a chunk of size 1253, which is longer than the specified 1000\n",
"Created a chunk of size 1642, which is longer than the specified 1000\n",
"Created a chunk of size 1419, which is longer than the specified 1000\n",
"Created a chunk of size 1438, which is longer than the specified 1000\n",
"Created a chunk of size 1427, which is longer than the specified 1000\n",
"Created a chunk of size 1684, which is longer than the specified 1000\n",
"Created a chunk of size 1760, which is longer than the specified 1000\n",
"Created a chunk of size 1157, which is longer than the specified 1000\n",
"Created a chunk of size 2504, which is longer than the specified 1000\n",
"Created a chunk of size 1082, which is longer than the specified 1000\n",
"Created a chunk of size 2268, which is longer than the specified 1000\n",
"Created a chunk of size 1784, which is longer than the specified 1000\n",
"Created a chunk of size 1311, which is longer than the specified 1000\n",
"Created a chunk of size 2972, which is longer than the specified 1000\n",
"Created a chunk of size 1144, which is longer than the specified 1000\n",
"Created a chunk of size 1825, which is longer than the specified 1000\n",
"Created a chunk of size 1508, which is longer than the specified 1000\n",
"Created a chunk of size 2901, which is longer than the specified 1000\n",
"Created a chunk of size 1715, which is longer than the specified 1000\n",
"Created a chunk of size 1062, which is longer than the specified 1000\n",
"Created a chunk of size 1206, which is longer than the specified 1000\n",
"Created a chunk of size 1102, which is longer than the specified 1000\n",
"Created a chunk of size 1184, which is longer than the specified 1000\n",
"Created a chunk of size 1002, which is longer than the specified 1000\n",
"Created a chunk of size 1065, which is longer than the specified 1000\n",
"Created a chunk of size 1871, which is longer than the specified 1000\n",
"Created a chunk of size 1754, which is longer than the specified 1000\n",
"Created a chunk of size 2413, which is longer than the specified 1000\n",
"Created a chunk of size 1771, which is longer than the specified 1000\n",
"Created a chunk of size 2054, which is longer than the specified 1000\n",
"Created a chunk of size 2000, which is longer than the specified 1000\n",
"Created a chunk of size 2061, which is longer than the specified 1000\n",
"Created a chunk of size 1066, which is longer than the specified 1000\n",
"Created a chunk of size 1419, which is longer than the specified 1000\n",
"Created a chunk of size 1368, which is longer than the specified 1000\n",
"Created a chunk of size 1008, which is longer than the specified 1000\n",
"Created a chunk of size 1227, which is longer than the specified 1000\n",
"Created a chunk of size 1745, which is longer than the specified 1000\n",
"Created a chunk of size 2296, which is longer than the specified 1000\n",
"Created a chunk of size 1083, which is longer than the specified 1000\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"3477\n"
]
}
],
"source": [
"from langchain.text_splitter import CharacterTextSplitter\n",
"\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"texts = text_splitter.split_documents(docs)\n",
"print(f\"{len(texts)}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then embed chunks and upload them to the DeepLake.\n",
"\n",
"This can take several minutes. "
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"OpenAIEmbeddings(client=<class 'openai.api_resources.embedding.Embedding'>, model='text-embedding-ada-002', document_model_name='text-embedding-ada-002', query_model_name='text-embedding-ada-002', embedding_ctx_length=8191, openai_api_key=None, openai_organization=None, allowed_special=set(), disallowed_special='all', chunk_size=1000, max_retries=6)"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"\n",
"embeddings = OpenAIEmbeddings()\n",
"embeddings"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.vectorstores import DeepLake\n",
"\n",
"db = DeepLake.from_documents(texts, embeddings, dataset_path=f\"hub://{DEEPLAKE_ACCOUNT_NAME}/langchain-code\")\n",
"db"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Question Answering\n",
"First load the dataset, construct the retriever, then construct the Conversational Chain"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"-"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"This dataset can be visualized in Jupyter Notebook by ds.visualize() or at https://app.activeloop.ai/user_name/langchain-code\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"hub://user_name/langchain-code loaded successfully.\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Deep Lake Dataset in hub://user_name/langchain-code already exists, loading from the storage\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Dataset(path='hub://user_name/langchain-code', read_only=True, tensors=['embedding', 'ids', 'metadata', 'text'])\n",
"\n",
" tensor htype shape dtype compression\n",
" ------- ------- ------- ------- ------- \n",
" embedding generic (3477, 1536) float32 None \n",
" ids text (3477, 1) str None \n",
" metadata json (3477, 1) str None \n",
" text text (3477, 1) str None \n"
]
}
],
"source": [
"db = DeepLake(dataset_path=f\"hub://{DEEPLAKE_ACCOUNT_NAME}/langchain-code\", read_only=True, embedding_function=embeddings)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"retriever = db.as_retriever()\n",
"retriever.search_kwargs['distance_metric'] = 'cos'\n",
"retriever.search_kwargs['fetch_k'] = 20\n",
"retriever.search_kwargs['maximal_marginal_relevance'] = True\n",
"retriever.search_kwargs['k'] = 20"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can also specify user defined functions using [Deep Lake filters](https://docs.deeplake.ai/en/latest/deeplake.core.dataset.html#deeplake.core.dataset.Dataset.filter)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def filter(x):\n",
" # filter based on source code\n",
" if 'something' in x['text'].data()['value']:\n",
" return False\n",
" \n",
" # filter based on path e.g. extension\n",
" metadata = x['metadata'].data()['value']\n",
" return 'only_this' in metadata['source'] or 'also_that' in metadata['source']\n",
"\n",
"### turn on below for custom filtering\n",
"# retriever.search_kwargs['filter'] = filter"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.chains import ConversationalRetrievalChain\n",
"\n",
"model = ChatOpenAI(model='gpt-3.5-turbo') # 'ada' 'gpt-3.5-turbo' 'gpt-4',\n",
"qa = ConversationalRetrievalChain.from_llm(model,retriever=retriever)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"questions = [\n",
" \"What is the class hierarchy?\",\n",
" # \"What classes are derived from the Chain class?\",\n",
" # \"What classes and functions in the ./langchain/utilities/ forlder are not covered by unit tests?\",\n",
" # \"What one improvement do you propose in code in relation to the class herarchy for the Chain class?\",\n",
"] \n",
"chat_history = []\n",
"\n",
"for question in questions: \n",
" result = qa({\"question\": question, \"chat_history\": chat_history})\n",
" chat_history.append((question, result['answer']))\n",
" print(f\"-> **Question**: {question} \\n\")\n",
" print(f\"**Answer**: {result['answer']} \\n\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"-> **Question**: What is the class hierarchy? \n",
"\n",
"**Answer**: There are several class hierarchies in the provided code, so I'll list a few:\n",
"\n",
"1. `BaseModel` -> `ConstitutionalPrinciple`: `ConstitutionalPrinciple` is a subclass of `BaseModel`.\n",
"2. `BasePromptTemplate` -> `StringPromptTemplate`, `AIMessagePromptTemplate`, `BaseChatPromptTemplate`, `ChatMessagePromptTemplate`, `ChatPromptTemplate`, `HumanMessagePromptTemplate`, `MessagesPlaceholder`, `SystemMessagePromptTemplate`, `FewShotPromptTemplate`, `FewShotPromptWithTemplates`, `Prompt`, `PromptTemplate`: All of these classes are subclasses of `BasePromptTemplate`.\n",
"3. `APIChain`, `Chain`, `MapReduceDocumentsChain`, `MapRerankDocumentsChain`, `RefineDocumentsChain`, `StuffDocumentsChain`, `HypotheticalDocumentEmbedder`, `LLMChain`, `LLMBashChain`, `LLMCheckerChain`, `LLMMathChain`, `LLMRequestsChain`, `PALChain`, `QAWithSourcesChain`, `VectorDBQAWithSourcesChain`, `VectorDBQA`, `SQLDatabaseChain`: All of these classes are subclasses of `Chain`.\n",
"4. `BaseLoader`: `BaseLoader` is a subclass of `ABC`.\n",
"5. `BaseTracer` -> `ChainRun`, `LLMRun`, `SharedTracer`, `ToolRun`, `Tracer`, `TracerException`, `TracerSession`: All of these classes are subclasses of `BaseTracer`.\n",
"6. `OpenAIEmbeddings`, `HuggingFaceEmbeddings`, `CohereEmbeddings`, `JinaEmbeddings`, `LlamaCppEmbeddings`, `HuggingFaceHubEmbeddings`, `TensorflowHubEmbeddings`, `SagemakerEndpointEmbeddings`, `HuggingFaceInstructEmbeddings`, `SelfHostedEmbeddings`, `SelfHostedHuggingFaceEmbeddings`, `SelfHostedHuggingFaceInstructEmbeddings`, `FakeEmbeddings`, `AlephAlphaAsymmetricSemanticEmbedding`, `AlephAlphaSymmetricSemanticEmbedding`: All of these classes are subclasses of `BaseLLM`. \n",
"\n",
"\n",
"-> **Question**: What classes are derived from the Chain class? \n",
"\n",
"**Answer**: There are multiple classes that are derived from the Chain class. Some of them are:\n",
"- APIChain\n",
"- AnalyzeDocumentChain\n",
"- ChatVectorDBChain\n",
"- CombineDocumentsChain\n",
"- ConstitutionalChain\n",
"- ConversationChain\n",
"- GraphQAChain\n",
"- HypotheticalDocumentEmbedder\n",
"- LLMChain\n",
"- LLMCheckerChain\n",
"- LLMRequestsChain\n",
"- LLMSummarizationCheckerChain\n",
"- MapReduceChain\n",
"- OpenAPIEndpointChain\n",
"- PALChain\n",
"- QAWithSourcesChain\n",
"- RetrievalQA\n",
"- RetrievalQAWithSourcesChain\n",
"- SequentialChain\n",
"- SQLDatabaseChain\n",
"- TransformChain\n",
"- VectorDBQA\n",
"- VectorDBQAWithSourcesChain\n",
"\n",
"There might be more classes that are derived from the Chain class as it is possible to create custom classes that extend the Chain class.\n",
"\n",
"\n",
"-> **Question**: What classes and functions in the ./langchain/utilities/ forlder are not covered by unit tests? \n",
"\n",
"**Answer**: All classes and functions in the `./langchain/utilities/` folder seem to have unit tests written for them. \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|