Spaces:
Sleeping
Sleeping
File size: 23,454 Bytes
cfd3735 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 |
{
"cells": [
{
"cell_type": "markdown",
"id": "5e3cb542-933d-4bf3-a82b-d9d6395a7832",
"metadata": {
"tags": []
},
"source": [
"# Wikibase Agent\n",
"\n",
"This notebook demonstrates a very simple wikibase agent that uses sparql generation. Although this code is intended to work against any\n",
"wikibase instance, we use http://wikidata.org for testing.\n",
"\n",
"If you are interested in wikibases and sparql, please consider helping to improve this agent. Look [here](https://github.com/donaldziff/langchain-wikibase) for more details and open questions.\n"
]
},
{
"cell_type": "markdown",
"id": "07d42966-7e99-4157-90dc-6704977dcf1b",
"metadata": {
"tags": []
},
"source": [
"## Preliminaries"
]
},
{
"cell_type": "markdown",
"id": "9132f093-c61e-4b8d-abef-91ebef3fc85f",
"metadata": {
"tags": []
},
"source": [
"### API keys and other secrats\n",
"\n",
"We use an `.ini` file, like this: \n",
"```\n",
"[OPENAI]\n",
"OPENAI_API_KEY=xyzzy\n",
"[WIKIDATA]\n",
"WIKIDATA_USER_AGENT_HEADER=argle-bargle\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "99567dfd-05a7-412f-abf0-9b9f4424acbd",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"['./secrets.ini']"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import configparser\n",
"config = configparser.ConfigParser()\n",
"config.read('./secrets.ini')"
]
},
{
"cell_type": "markdown",
"id": "332b6658-c978-41ca-a2be-4f8677fecaef",
"metadata": {
"tags": []
},
"source": [
"### OpenAI API Key\n",
"\n",
"An OpenAI API key is required unless you modify the code below to use another LLM provider."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "dd328ee2-33cc-4e1e-aff7-cc0a2e05e2e6",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"openai_api_key = config['OPENAI']['OPENAI_API_KEY']\n",
"import os\n",
"os.environ.update({'OPENAI_API_KEY': openai_api_key})"
]
},
{
"cell_type": "markdown",
"id": "42a9311b-600d-42bc-b000-2692ef87a213",
"metadata": {
"tags": []
},
"source": [
"### Wikidata user-agent header\n",
"\n",
"Wikidata policy requires a user-agent header. See https://meta.wikimedia.org/wiki/User-Agent_policy. However, at present this policy is not strictly enforced."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "17ba657e-789d-40e1-b4b7-4f29ba06fe79",
"metadata": {},
"outputs": [],
"source": [
"wikidata_user_agent_header = None if not config.has_section('WIKIDATA') else config['WIKIDATA']['WIKIDAtA_USER_AGENT_HEADER']"
]
},
{
"cell_type": "markdown",
"id": "db08d308-050a-4fc8-93c9-8de4ae977ac3",
"metadata": {},
"source": [
"### Enable tracing if desired"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "77d2da08-fccd-4676-b77e-c0e89bf343cb",
"metadata": {},
"outputs": [],
"source": [
"#import os\n",
"#os.environ[\"LANGCHAIN_HANDLER\"] = \"langchain\"\n",
"#os.environ[\"LANGCHAIN_SESSION\"] = \"default\" # Make sure this session actually exists. "
]
},
{
"cell_type": "markdown",
"id": "3dbc5bfc-48ce-4f90-873c-7336b21300c6",
"metadata": {},
"source": [
"# Tools\n",
"\n",
"Three tools are provided for this simple agent:\n",
"* `ItemLookup`: for finding the q-number of an item\n",
"* `PropertyLookup`: for finding the p-number of a property\n",
"* `SparqlQueryRunner`: for running a sparql query"
]
},
{
"cell_type": "markdown",
"id": "1f801b4e-6576-4914-aa4f-6f4c4e3c7924",
"metadata": {
"tags": []
},
"source": [
"## Item and Property lookup\n",
"\n",
"Item and Property lookup are implemented in a single method, using an elastic search endpoint. Not all wikibase instances have it, but wikidata does, and that's where we'll start."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "42d23f0a-1c74-4c9c-85f2-d0e24204e96a",
"metadata": {},
"outputs": [],
"source": [
"def get_nested_value(o: dict, path: list) -> any:\n",
" current = o\n",
" for key in path:\n",
" try:\n",
" current = current[key]\n",
" except:\n",
" return None\n",
" return current\n",
"\n",
"import requests\n",
"\n",
"from typing import Optional\n",
"\n",
"def vocab_lookup(search: str, entity_type: str = \"item\",\n",
" url: str = \"https://www.wikidata.org/w/api.php\",\n",
" user_agent_header: str = wikidata_user_agent_header,\n",
" srqiprofile: str = None,\n",
" ) -> Optional[str]: \n",
" headers = {\n",
" 'Accept': 'application/json'\n",
" }\n",
" if wikidata_user_agent_header is not None:\n",
" headers['User-Agent'] = wikidata_user_agent_header\n",
" \n",
" if entity_type == \"item\":\n",
" srnamespace = 0\n",
" srqiprofile = \"classic_noboostlinks\" if srqiprofile is None else srqiprofile\n",
" elif entity_type == \"property\":\n",
" srnamespace = 120\n",
" srqiprofile = \"classic\" if srqiprofile is None else srqiprofile\n",
" else:\n",
" raise ValueError(\"entity_type must be either 'property' or 'item'\") \n",
" \n",
" params = {\n",
" \"action\": \"query\",\n",
" \"list\": \"search\",\n",
" \"srsearch\": search,\n",
" \"srnamespace\": srnamespace,\n",
" \"srlimit\": 1,\n",
" \"srqiprofile\": srqiprofile,\n",
" \"srwhat\": 'text',\n",
" \"format\": \"json\"\n",
" }\n",
" \n",
" response = requests.get(url, headers=headers, params=params)\n",
" \n",
" if response.status_code == 200:\n",
" title = get_nested_value(response.json(), ['query', 'search', 0, 'title'])\n",
" if title is None:\n",
" return f\"I couldn't find any {entity_type} for '{search}'. Please rephrase your request and try again\"\n",
" # if there is a prefix, strip it off\n",
" return title.split(':')[-1]\n",
" else:\n",
" return \"Sorry, I got an error. Please try again.\""
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "e52060fa-3614-43fb-894e-54e9b75d1e9f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Q4180017\n"
]
}
],
"source": [
"print(vocab_lookup(\"Malin 1\"))"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "b23ab322-b2cf-404e-b36f-2bfc1d79b0d3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"P31\n"
]
}
],
"source": [
"print(vocab_lookup(\"instance of\", entity_type=\"property\"))"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "89020cc8-104e-42d0-ac32-885e590de515",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"I couldn't find any item for 'Ceci n'est pas un q-item'. Please rephrase your request and try again\n"
]
}
],
"source": [
"print(vocab_lookup(\"Ceci n'est pas un q-item\"))"
]
},
{
"cell_type": "markdown",
"id": "78d66d8b-0e34-4d3f-a18d-c7284840ac76",
"metadata": {},
"source": [
"## Sparql runner "
]
},
{
"cell_type": "markdown",
"id": "c6f60069-fbe0-4015-87fb-0e487cd914e7",
"metadata": {},
"source": [
"This tool runs sparql - by default, wikidata is used."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "b5b97a4d-2a39-4993-88d9-e7818c0a2853",
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"from typing import List, Dict, Any\n",
"import json\n",
"\n",
"def run_sparql(query: str, url='https://query.wikidata.org/sparql',\n",
" user_agent_header: str = wikidata_user_agent_header) -> List[Dict[str, Any]]:\n",
" headers = {\n",
" 'Accept': 'application/json'\n",
" }\n",
" if wikidata_user_agent_header is not None:\n",
" headers['User-Agent'] = wikidata_user_agent_header\n",
"\n",
" response = requests.get(url, headers=headers, params={'query': query, 'format': 'json'})\n",
"\n",
" if response.status_code != 200:\n",
" return \"That query failed. Perhaps you could try a different one?\"\n",
" results = get_nested_value(response.json(),['results', 'bindings'])\n",
" return json.dumps(results)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "149722ec-8bc1-4d4f-892b-e4ddbe8444c1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'[{\"count\": {\"datatype\": \"http://www.w3.org/2001/XMLSchema#integer\", \"type\": \"literal\", \"value\": \"20\"}}]'"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"run_sparql(\"SELECT (COUNT(?children) as ?count) WHERE { wd:Q1339 wdt:P40 ?children . }\")"
]
},
{
"cell_type": "markdown",
"id": "9f0302fd-ba35-4acc-ba32-1d7c9295c898",
"metadata": {},
"source": [
"# Agent"
]
},
{
"cell_type": "markdown",
"id": "3122a961-9673-4a52-b1cd-7d62fbdf8d96",
"metadata": {},
"source": [
"## Wrap the tools"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "cc41ae88-2e53-4363-9878-28b26430cb1e",
"metadata": {},
"outputs": [],
"source": [
"from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain import OpenAI, LLMChain\n",
"from typing import List, Union\n",
"from langchain.schema import AgentAction, AgentFinish\n",
"import re"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "2810a3ce-b9c6-47ee-8068-12ca967cd0ea",
"metadata": {},
"outputs": [],
"source": [
"# Define which tools the agent can use to answer user queries\n",
"tools = [\n",
" Tool(\n",
" name = \"ItemLookup\",\n",
" func=(lambda x: vocab_lookup(x, entity_type=\"item\")),\n",
" description=\"useful for when you need to know the q-number for an item\"\n",
" ),\n",
" Tool(\n",
" name = \"PropertyLookup\",\n",
" func=(lambda x: vocab_lookup(x, entity_type=\"property\")),\n",
" description=\"useful for when you need to know the p-number for a property\"\n",
" ),\n",
" Tool(\n",
" name = \"SparqlQueryRunner\",\n",
" func=run_sparql,\n",
" description=\"useful for getting results from a wikibase\"\n",
" ) \n",
"]"
]
},
{
"cell_type": "markdown",
"id": "ab0f2778-a195-4a4a-a5b4-c1e809e1fb7b",
"metadata": {},
"source": [
"## Prompts"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "7bd4ba4f-57d6-4ceb-b932-3cb0d0509a24",
"metadata": {},
"outputs": [],
"source": [
"# Set up the base template\n",
"template = \"\"\"\n",
"Answer the following questions by running a sparql query against a wikibase where the p and q items are \n",
"completely unknown to you. You will need to discover the p and q items before you can generate the sparql.\n",
"Do not assume you know the p and q items for any concepts. Always use tools to find all p and q items.\n",
"After you generate the sparql, you should run it. The results will be returned in json. \n",
"Summarize the json results in natural language.\n",
"\n",
"You may assume the following prefixes:\n",
"PREFIX wd: <http://www.wikidata.org/entity/>\n",
"PREFIX wdt: <http://www.wikidata.org/prop/direct/>\n",
"PREFIX p: <http://www.wikidata.org/prop/>\n",
"PREFIX ps: <http://www.wikidata.org/prop/statement/>\n",
"\n",
"When generating sparql:\n",
"* Try to avoid \"count\" and \"filter\" queries if possible\n",
"* Never enclose the sparql in back-quotes\n",
"\n",
"You have access to the following tools:\n",
"\n",
"{tools}\n",
"\n",
"Use the following format:\n",
"\n",
"Question: the input question for which you must provide a natural language answer\n",
"Thought: you should always think about what to do\n",
"Action: the action to take, should be one of [{tool_names}]\n",
"Action Input: the input to the action\n",
"Observation: the result of the action\n",
"... (this Thought/Action/Action Input/Observation can repeat N times)\n",
"Thought: I now know the final answer\n",
"Final Answer: the final answer to the original input question\n",
"\n",
"Question: {input}\n",
"{agent_scratchpad}\"\"\"\n"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "7e8d771a-64bb-4ec8-b472-6a9a40c6dd38",
"metadata": {},
"outputs": [],
"source": [
"# Set up a prompt template\n",
"class CustomPromptTemplate(StringPromptTemplate):\n",
" # The template to use\n",
" template: str\n",
" # The list of tools available\n",
" tools: List[Tool]\n",
" \n",
" def format(self, **kwargs) -> str:\n",
" # Get the intermediate steps (AgentAction, Observation tuples)\n",
" # Format them in a particular way\n",
" intermediate_steps = kwargs.pop(\"intermediate_steps\")\n",
" thoughts = \"\"\n",
" for action, observation in intermediate_steps:\n",
" thoughts += action.log\n",
" thoughts += f\"\\nObservation: {observation}\\nThought: \"\n",
" # Set the agent_scratchpad variable to that value\n",
" kwargs[\"agent_scratchpad\"] = thoughts\n",
" # Create a tools variable from the list of tools provided\n",
" kwargs[\"tools\"] = \"\\n\".join([f\"{tool.name}: {tool.description}\" for tool in self.tools])\n",
" # Create a list of tool names for the tools provided\n",
" kwargs[\"tool_names\"] = \", \".join([tool.name for tool in self.tools])\n",
" return self.template.format(**kwargs)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "f97dca78-fdde-4a70-9137-e34a21d14e64",
"metadata": {},
"outputs": [],
"source": [
"prompt = CustomPromptTemplate(\n",
" template=template,\n",
" tools=tools,\n",
" # This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically\n",
" # This includes the `intermediate_steps` variable because that is needed\n",
" input_variables=[\"input\", \"intermediate_steps\"]\n",
")"
]
},
{
"cell_type": "markdown",
"id": "12c57d77-3c1e-4cde-9a83-7d2134392479",
"metadata": {},
"source": [
"## Output parser \n",
"This is unchanged from langchain docs"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "42da05eb-c103-4649-9d20-7143a8880721",
"metadata": {},
"outputs": [],
"source": [
"class CustomOutputParser(AgentOutputParser):\n",
" \n",
" def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:\n",
" # Check if agent should finish\n",
" if \"Final Answer:\" in llm_output:\n",
" return AgentFinish(\n",
" # Return values is generally always a dictionary with a single `output` key\n",
" # It is not recommended to try anything else at the moment :)\n",
" return_values={\"output\": llm_output.split(\"Final Answer:\")[-1].strip()},\n",
" log=llm_output,\n",
" )\n",
" # Parse out the action and action input\n",
" regex = r\"Action: (.*?)[\\n]*Action Input:[\\s]*(.*)\"\n",
" match = re.search(regex, llm_output, re.DOTALL)\n",
" if not match:\n",
" raise ValueError(f\"Could not parse LLM output: `{llm_output}`\")\n",
" action = match.group(1).strip()\n",
" action_input = match.group(2)\n",
" # Return the action and action input\n",
" return AgentAction(tool=action, tool_input=action_input.strip(\" \").strip('\"'), log=llm_output)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "d2b4d710-8cc9-4040-9269-59cf6c5c22be",
"metadata": {},
"outputs": [],
"source": [
"output_parser = CustomOutputParser()"
]
},
{
"cell_type": "markdown",
"id": "48a758cb-93a7-4555-b69a-896d2d43c6f0",
"metadata": {},
"source": [
"## Specify the LLM model"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "72988c79-8f60-4b0f-85ee-6af32e8de9c2",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"llm = ChatOpenAI(model=\"gpt-4\", temperature=0)"
]
},
{
"cell_type": "markdown",
"id": "95685d14-647a-4e24-ae2c-a8dd1e364921",
"metadata": {},
"source": [
"## Agent and agent executor"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "13d55765-bfa1-43b3-b7cb-00f52ebe7747",
"metadata": {},
"outputs": [],
"source": [
"# LLM chain consisting of the LLM and a prompt\n",
"llm_chain = LLMChain(llm=llm, prompt=prompt)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "b3f7ac3c-398e-49f9-baed-554f49a191c3",
"metadata": {},
"outputs": [],
"source": [
"tool_names = [tool.name for tool in tools]\n",
"agent = LLMSingleActionAgent(\n",
" llm_chain=llm_chain, \n",
" output_parser=output_parser,\n",
" stop=[\"\\nObservation:\"], \n",
" allowed_tools=tool_names\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "65740577-272e-4853-8d47-b87784cfaba0",
"metadata": {},
"outputs": [],
"source": [
"agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)"
]
},
{
"cell_type": "markdown",
"id": "66e3d13b-77cf-41d3-b541-b54535c14459",
"metadata": {},
"source": [
"## Run it!"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "6e97a07c-d7bf-4a35-9ab2-b59ae865c62c",
"metadata": {},
"outputs": [],
"source": [
"# If you prefer in-line tracing, uncomment this line\n",
"# agent_executor.agent.llm_chain.verbose = True"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "a11ca60d-f57b-4fe8-943e-a258e37463c7",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: I need to find the Q number for J.S. Bach.\n",
"Action: ItemLookup\n",
"Action Input: J.S. Bach\u001b[0m\n",
"\n",
"Observation:\u001b[36;1m\u001b[1;3mQ1339\u001b[0m\u001b[32;1m\u001b[1;3mI need to find the P number for children.\n",
"Action: PropertyLookup\n",
"Action Input: children\u001b[0m\n",
"\n",
"Observation:\u001b[33;1m\u001b[1;3mP1971\u001b[0m\u001b[32;1m\u001b[1;3mNow I can query the number of children J.S. Bach had.\n",
"Action: SparqlQueryRunner\n",
"Action Input: SELECT ?children WHERE { wd:Q1339 wdt:P1971 ?children }\u001b[0m\n",
"\n",
"Observation:\u001b[38;5;200m\u001b[1;3m[{\"children\": {\"datatype\": \"http://www.w3.org/2001/XMLSchema#decimal\", \"type\": \"literal\", \"value\": \"20\"}}]\u001b[0m\u001b[32;1m\u001b[1;3mI now know the final answer.\n",
"Final Answer: J.S. Bach had 20 children.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'J.S. Bach had 20 children.'"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent_executor.run(\"How many children did J.S. Bach have?\")"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "d0b42a41-996b-4156-82e4-f0651a87ee34",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mThought: To find Hakeem Olajuwon's Basketball-Reference.com NBA player ID, I need to first find his Wikidata item (Q-number) and then query for the relevant property (P-number).\n",
"Action: ItemLookup\n",
"Action Input: Hakeem Olajuwon\u001b[0m\n",
"\n",
"Observation:\u001b[36;1m\u001b[1;3mQ273256\u001b[0m\u001b[32;1m\u001b[1;3mNow that I have Hakeem Olajuwon's Wikidata item (Q273256), I need to find the P-number for the Basketball-Reference.com NBA player ID property.\n",
"Action: PropertyLookup\n",
"Action Input: Basketball-Reference.com NBA player ID\u001b[0m\n",
"\n",
"Observation:\u001b[33;1m\u001b[1;3mP2685\u001b[0m\u001b[32;1m\u001b[1;3mNow that I have both the Q-number for Hakeem Olajuwon (Q273256) and the P-number for the Basketball-Reference.com NBA player ID property (P2685), I can run a SPARQL query to get the ID value.\n",
"Action: SparqlQueryRunner\n",
"Action Input: \n",
"SELECT ?playerID WHERE {\n",
" wd:Q273256 wdt:P2685 ?playerID .\n",
"}\u001b[0m\n",
"\n",
"Observation:\u001b[38;5;200m\u001b[1;3m[{\"playerID\": {\"type\": \"literal\", \"value\": \"o/olajuha01\"}}]\u001b[0m\u001b[32;1m\u001b[1;3mI now know the final answer\n",
"Final Answer: Hakeem Olajuwon's Basketball-Reference.com NBA player ID is \"o/olajuha01\".\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Hakeem Olajuwon\\'s Basketball-Reference.com NBA player ID is \"o/olajuha01\".'"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent_executor.run(\"What is the Basketball-Reference.com NBA player ID of Hakeem Olajuwon?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "05fb3a3e-8a9f-482d-bd54-4c6e60ef60dd",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "conda210",
"language": "python",
"name": "conda210"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|