File size: 26,256 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "517a9fd4",
   "metadata": {},
   "source": [
    "# BabyAGI with Tools\n",
    "\n",
    "This notebook builds on top of [baby agi](baby_agi.ipynb), but shows how you can swap out the execution chain. The previous execution chain was just an LLM which made stuff up. By swapping it out with an agent that has access to tools, we can hopefully get real reliable information"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "556af556",
   "metadata": {},
   "source": [
    "## Install and Import Required Modules"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "c8a354b6",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "from collections import deque\n",
    "from typing import Dict, List, Optional, Any\n",
    "\n",
    "from langchain import LLMChain, OpenAI, PromptTemplate\n",
    "from langchain.embeddings import OpenAIEmbeddings\n",
    "from langchain.llms import BaseLLM\n",
    "from langchain.vectorstores.base import VectorStore\n",
    "from pydantic import BaseModel, Field\n",
    "from langchain.chains.base import Chain"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "09f70772",
   "metadata": {},
   "source": [
    "## Connect to the Vector Store\n",
    "\n",
    "Depending on what vectorstore you use, this step may look different."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "794045d4",
   "metadata": {},
   "outputs": [],
   "source": [
    "%pip install faiss-cpu > /dev/null\n",
    "%pip install google-search-results > /dev/null\n",
    "from langchain.vectorstores import FAISS\n",
    "from langchain.docstore import InMemoryDocstore"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "6e0305eb",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define your embedding model\n",
    "embeddings_model = OpenAIEmbeddings()\n",
    "# Initialize the vectorstore as empty\n",
    "import faiss\n",
    "\n",
    "embedding_size = 1536\n",
    "index = faiss.IndexFlatL2(embedding_size)\n",
    "vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0f3b72bf",
   "metadata": {},
   "source": [
    "## Define the Chains\n",
    "\n",
    "BabyAGI relies on three LLM chains:\n",
    "- Task creation chain to select new tasks to add to the list\n",
    "- Task prioritization chain to re-prioritize tasks\n",
    "- Execution Chain to execute the tasks\n",
    "\n",
    "\n",
    "NOTE: in this notebook, the Execution chain will now be an agent."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "bf4bd5cd",
   "metadata": {},
   "outputs": [],
   "source": [
    "class TaskCreationChain(LLMChain):\n",
    "    \"\"\"Chain to generates tasks.\"\"\"\n",
    "\n",
    "    @classmethod\n",
    "    def from_llm(cls, llm: BaseLLM, verbose: bool = True) -> LLMChain:\n",
    "        \"\"\"Get the response parser.\"\"\"\n",
    "        task_creation_template = (\n",
    "            \"You are an task creation AI that uses the result of an execution agent\"\n",
    "            \" to create new tasks with the following objective: {objective},\"\n",
    "            \" The last completed task has the result: {result}.\"\n",
    "            \" This result was based on this task description: {task_description}.\"\n",
    "            \" These are incomplete tasks: {incomplete_tasks}.\"\n",
    "            \" Based on the result, create new tasks to be completed\"\n",
    "            \" by the AI system that do not overlap with incomplete tasks.\"\n",
    "            \" Return the tasks as an array.\"\n",
    "        )\n",
    "        prompt = PromptTemplate(\n",
    "            template=task_creation_template,\n",
    "            input_variables=[\n",
    "                \"result\",\n",
    "                \"task_description\",\n",
    "                \"incomplete_tasks\",\n",
    "                \"objective\",\n",
    "            ],\n",
    "        )\n",
    "        return cls(prompt=prompt, llm=llm, verbose=verbose)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "b6488ffe",
   "metadata": {},
   "outputs": [],
   "source": [
    "class TaskPrioritizationChain(LLMChain):\n",
    "    \"\"\"Chain to prioritize tasks.\"\"\"\n",
    "\n",
    "    @classmethod\n",
    "    def from_llm(cls, llm: BaseLLM, verbose: bool = True) -> LLMChain:\n",
    "        \"\"\"Get the response parser.\"\"\"\n",
    "        task_prioritization_template = (\n",
    "            \"You are an task prioritization AI tasked with cleaning the formatting of and reprioritizing\"\n",
    "            \" the following tasks: {task_names}.\"\n",
    "            \" Consider the ultimate objective of your team: {objective}.\"\n",
    "            \" Do not remove any tasks. Return the result as a numbered list, like:\"\n",
    "            \" #. First task\"\n",
    "            \" #. Second task\"\n",
    "            \" Start the task list with number {next_task_id}.\"\n",
    "        )\n",
    "        prompt = PromptTemplate(\n",
    "            template=task_prioritization_template,\n",
    "            input_variables=[\"task_names\", \"next_task_id\", \"objective\"],\n",
    "        )\n",
    "        return cls(prompt=prompt, llm=llm, verbose=verbose)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "id": "b43cd580",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.agents import ZeroShotAgent, Tool, AgentExecutor\n",
    "from langchain import OpenAI, SerpAPIWrapper, LLMChain\n",
    "\n",
    "todo_prompt = PromptTemplate.from_template(\n",
    "    \"You are a planner who is an expert at coming up with a todo list for a given objective. Come up with a todo list for this objective: {objective}\"\n",
    ")\n",
    "todo_chain = LLMChain(llm=OpenAI(temperature=0), prompt=todo_prompt)\n",
    "search = SerpAPIWrapper()\n",
    "tools = [\n",
    "    Tool(\n",
    "        name=\"Search\",\n",
    "        func=search.run,\n",
    "        description=\"useful for when you need to answer questions about current events\",\n",
    "    ),\n",
    "    Tool(\n",
    "        name=\"TODO\",\n",
    "        func=todo_chain.run,\n",
    "        description=\"useful for when you need to come up with todo lists. Input: an objective to create a todo list for. Output: a todo list for that objective. Please be very clear what the objective is!\",\n",
    "    ),\n",
    "]\n",
    "\n",
    "\n",
    "prefix = \"\"\"You are an AI who performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}.\"\"\"\n",
    "suffix = \"\"\"Question: {task}\n",
    "{agent_scratchpad}\"\"\"\n",
    "prompt = ZeroShotAgent.create_prompt(\n",
    "    tools,\n",
    "    prefix=prefix,\n",
    "    suffix=suffix,\n",
    "    input_variables=[\"objective\", \"task\", \"context\", \"agent_scratchpad\"],\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3ad996c5",
   "metadata": {},
   "source": [
    "### Define the BabyAGI Controller\n",
    "\n",
    "BabyAGI composes the chains defined above in a (potentially-)infinite loop."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 47,
   "id": "0ada0636",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_next_task(\n",
    "    task_creation_chain: LLMChain,\n",
    "    result: Dict,\n",
    "    task_description: str,\n",
    "    task_list: List[str],\n",
    "    objective: str,\n",
    ") -> List[Dict]:\n",
    "    \"\"\"Get the next task.\"\"\"\n",
    "    incomplete_tasks = \", \".join(task_list)\n",
    "    response = task_creation_chain.run(\n",
    "        result=result,\n",
    "        task_description=task_description,\n",
    "        incomplete_tasks=incomplete_tasks,\n",
    "        objective=objective,\n",
    "    )\n",
    "    new_tasks = response.split(\"\\n\")\n",
    "    return [{\"task_name\": task_name} for task_name in new_tasks if task_name.strip()]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "id": "d35250ad",
   "metadata": {},
   "outputs": [],
   "source": [
    "def prioritize_tasks(\n",
    "    task_prioritization_chain: LLMChain,\n",
    "    this_task_id: int,\n",
    "    task_list: List[Dict],\n",
    "    objective: str,\n",
    ") -> List[Dict]:\n",
    "    \"\"\"Prioritize tasks.\"\"\"\n",
    "    task_names = [t[\"task_name\"] for t in task_list]\n",
    "    next_task_id = int(this_task_id) + 1\n",
    "    response = task_prioritization_chain.run(\n",
    "        task_names=task_names, next_task_id=next_task_id, objective=objective\n",
    "    )\n",
    "    new_tasks = response.split(\"\\n\")\n",
    "    prioritized_task_list = []\n",
    "    for task_string in new_tasks:\n",
    "        if not task_string.strip():\n",
    "            continue\n",
    "        task_parts = task_string.strip().split(\".\", 1)\n",
    "        if len(task_parts) == 2:\n",
    "            task_id = task_parts[0].strip()\n",
    "            task_name = task_parts[1].strip()\n",
    "            prioritized_task_list.append({\"task_id\": task_id, \"task_name\": task_name})\n",
    "    return prioritized_task_list"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 49,
   "id": "e3f1840c",
   "metadata": {},
   "outputs": [],
   "source": [
    "def _get_top_tasks(vectorstore, query: str, k: int) -> List[str]:\n",
    "    \"\"\"Get the top k tasks based on the query.\"\"\"\n",
    "    results = vectorstore.similarity_search_with_score(query, k=k)\n",
    "    if not results:\n",
    "        return []\n",
    "    sorted_results, _ = zip(*sorted(results, key=lambda x: x[1], reverse=True))\n",
    "    return [str(item.metadata[\"task\"]) for item in sorted_results]\n",
    "\n",
    "\n",
    "def execute_task(\n",
    "    vectorstore, execution_chain: LLMChain, objective: str, task: str, k: int = 5\n",
    ") -> str:\n",
    "    \"\"\"Execute a task.\"\"\"\n",
    "    context = _get_top_tasks(vectorstore, query=objective, k=k)\n",
    "    return execution_chain.run(objective=objective, context=context, task=task)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 50,
   "id": "1e978938",
   "metadata": {},
   "outputs": [],
   "source": [
    "class BabyAGI(Chain, BaseModel):\n",
    "    \"\"\"Controller model for the BabyAGI agent.\"\"\"\n",
    "\n",
    "    task_list: deque = Field(default_factory=deque)\n",
    "    task_creation_chain: TaskCreationChain = Field(...)\n",
    "    task_prioritization_chain: TaskPrioritizationChain = Field(...)\n",
    "    execution_chain: AgentExecutor = Field(...)\n",
    "    task_id_counter: int = Field(1)\n",
    "    vectorstore: VectorStore = Field(init=False)\n",
    "    max_iterations: Optional[int] = None\n",
    "\n",
    "    class Config:\n",
    "        \"\"\"Configuration for this pydantic object.\"\"\"\n",
    "\n",
    "        arbitrary_types_allowed = True\n",
    "\n",
    "    def add_task(self, task: Dict):\n",
    "        self.task_list.append(task)\n",
    "\n",
    "    def print_task_list(self):\n",
    "        print(\"\\033[95m\\033[1m\" + \"\\n*****TASK LIST*****\\n\" + \"\\033[0m\\033[0m\")\n",
    "        for t in self.task_list:\n",
    "            print(str(t[\"task_id\"]) + \": \" + t[\"task_name\"])\n",
    "\n",
    "    def print_next_task(self, task: Dict):\n",
    "        print(\"\\033[92m\\033[1m\" + \"\\n*****NEXT TASK*****\\n\" + \"\\033[0m\\033[0m\")\n",
    "        print(str(task[\"task_id\"]) + \": \" + task[\"task_name\"])\n",
    "\n",
    "    def print_task_result(self, result: str):\n",
    "        print(\"\\033[93m\\033[1m\" + \"\\n*****TASK RESULT*****\\n\" + \"\\033[0m\\033[0m\")\n",
    "        print(result)\n",
    "\n",
    "    @property\n",
    "    def input_keys(self) -> List[str]:\n",
    "        return [\"objective\"]\n",
    "\n",
    "    @property\n",
    "    def output_keys(self) -> List[str]:\n",
    "        return []\n",
    "\n",
    "    def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:\n",
    "        \"\"\"Run the agent.\"\"\"\n",
    "        objective = inputs[\"objective\"]\n",
    "        first_task = inputs.get(\"first_task\", \"Make a todo list\")\n",
    "        self.add_task({\"task_id\": 1, \"task_name\": first_task})\n",
    "        num_iters = 0\n",
    "        while True:\n",
    "            if self.task_list:\n",
    "                self.print_task_list()\n",
    "\n",
    "                # Step 1: Pull the first task\n",
    "                task = self.task_list.popleft()\n",
    "                self.print_next_task(task)\n",
    "\n",
    "                # Step 2: Execute the task\n",
    "                result = execute_task(\n",
    "                    self.vectorstore, self.execution_chain, objective, task[\"task_name\"]\n",
    "                )\n",
    "                this_task_id = int(task[\"task_id\"])\n",
    "                self.print_task_result(result)\n",
    "\n",
    "                # Step 3: Store the result in Pinecone\n",
    "                result_id = f\"result_{task['task_id']}\"\n",
    "                self.vectorstore.add_texts(\n",
    "                    texts=[result],\n",
    "                    metadatas=[{\"task\": task[\"task_name\"]}],\n",
    "                    ids=[result_id],\n",
    "                )\n",
    "\n",
    "                # Step 4: Create new tasks and reprioritize task list\n",
    "                new_tasks = get_next_task(\n",
    "                    self.task_creation_chain,\n",
    "                    result,\n",
    "                    task[\"task_name\"],\n",
    "                    [t[\"task_name\"] for t in self.task_list],\n",
    "                    objective,\n",
    "                )\n",
    "                for new_task in new_tasks:\n",
    "                    self.task_id_counter += 1\n",
    "                    new_task.update({\"task_id\": self.task_id_counter})\n",
    "                    self.add_task(new_task)\n",
    "                self.task_list = deque(\n",
    "                    prioritize_tasks(\n",
    "                        self.task_prioritization_chain,\n",
    "                        this_task_id,\n",
    "                        list(self.task_list),\n",
    "                        objective,\n",
    "                    )\n",
    "                )\n",
    "            num_iters += 1\n",
    "            if self.max_iterations is not None and num_iters == self.max_iterations:\n",
    "                print(\n",
    "                    \"\\033[91m\\033[1m\" + \"\\n*****TASK ENDING*****\\n\" + \"\\033[0m\\033[0m\"\n",
    "                )\n",
    "                break\n",
    "        return {}\n",
    "\n",
    "    @classmethod\n",
    "    def from_llm(\n",
    "        cls, llm: BaseLLM, vectorstore: VectorStore, verbose: bool = False, **kwargs\n",
    "    ) -> \"BabyAGI\":\n",
    "        \"\"\"Initialize the BabyAGI Controller.\"\"\"\n",
    "        task_creation_chain = TaskCreationChain.from_llm(llm, verbose=verbose)\n",
    "        task_prioritization_chain = TaskPrioritizationChain.from_llm(\n",
    "            llm, verbose=verbose\n",
    "        )\n",
    "        llm_chain = LLMChain(llm=llm, prompt=prompt)\n",
    "        tool_names = [tool.name for tool in tools]\n",
    "        agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names)\n",
    "        agent_executor = AgentExecutor.from_agent_and_tools(\n",
    "            agent=agent, tools=tools, verbose=True\n",
    "        )\n",
    "        return cls(\n",
    "            task_creation_chain=task_creation_chain,\n",
    "            task_prioritization_chain=task_prioritization_chain,\n",
    "            execution_chain=agent_executor,\n",
    "            vectorstore=vectorstore,\n",
    "            **kwargs,\n",
    "        )"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "05ba762e",
   "metadata": {},
   "source": [
    "### Run the BabyAGI\n",
    "\n",
    "Now it's time to create the BabyAGI controller and watch it try to accomplish your objective."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "id": "3d220b69",
   "metadata": {},
   "outputs": [],
   "source": [
    "OBJECTIVE = \"Write a weather report for SF today\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 52,
   "id": "8a8e5543",
   "metadata": {},
   "outputs": [],
   "source": [
    "llm = OpenAI(temperature=0)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 53,
   "id": "3d69899b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Logging of LLMChains\n",
    "verbose = False\n",
    "# If None, will keep on going forever\n",
    "max_iterations: Optional[int] = 3\n",
    "baby_agi = BabyAGI.from_llm(\n",
    "    llm=llm, vectorstore=vectorstore, verbose=verbose, max_iterations=max_iterations\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 54,
   "id": "f7957b51",
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[95m\u001b[1m\n",
      "*****TASK LIST*****\n",
      "\u001b[0m\u001b[0m\n",
      "1: Make a todo list\n",
      "\u001b[92m\u001b[1m\n",
      "*****NEXT TASK*****\n",
      "\u001b[0m\u001b[0m\n",
      "1: Make a todo list\n",
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3mThought: I need to gather data on the current weather conditions in SF\n",
      "Action: Search\n",
      "Action Input: Current weather conditions in SF\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3mHigh 67F. Winds WNW at 10 to 15 mph. Clear to partly cloudy.\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I need to make a todo list\n",
      "Action: TODO\n",
      "Action Input: Write a weather report for SF today\u001b[0m\n",
      "Observation: \u001b[33;1m\u001b[1;3m\n",
      "\n",
      "1. Research current weather conditions in San Francisco\n",
      "2. Gather data on temperature, humidity, wind speed, and other relevant weather conditions\n",
      "3. Analyze data to determine current weather trends\n",
      "4. Write a brief introduction to the weather report\n",
      "5. Describe current weather conditions in San Francisco\n",
      "6. Discuss any upcoming weather changes\n",
      "7. Summarize the weather report\n",
      "8. Proofread and edit the report\n",
      "9. Submit the report\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
      "Final Answer: A weather report for SF today should include research on current weather conditions in San Francisco, gathering data on temperature, humidity, wind speed, and other relevant weather conditions, analyzing data to determine current weather trends, writing a brief introduction to the weather report, describing current weather conditions in San Francisco, discussing any upcoming weather changes, summarizing the weather report, proofreading and editing the report, and submitting the report.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n",
      "\u001b[93m\u001b[1m\n",
      "*****TASK RESULT*****\n",
      "\u001b[0m\u001b[0m\n",
      "A weather report for SF today should include research on current weather conditions in San Francisco, gathering data on temperature, humidity, wind speed, and other relevant weather conditions, analyzing data to determine current weather trends, writing a brief introduction to the weather report, describing current weather conditions in San Francisco, discussing any upcoming weather changes, summarizing the weather report, proofreading and editing the report, and submitting the report.\n",
      "\u001b[95m\u001b[1m\n",
      "*****TASK LIST*****\n",
      "\u001b[0m\u001b[0m\n",
      "2: Gather data on temperature, humidity, wind speed, and other relevant weather conditions\n",
      "3: Analyze data to determine current weather trends\n",
      "4: Write a brief introduction to the weather report\n",
      "5: Describe current weather conditions in San Francisco\n",
      "6: Discuss any upcoming weather changes\n",
      "7: Summarize the weather report\n",
      "8: Proofread and edit the report\n",
      "9: Submit the report\n",
      "1: Research current weather conditions in San Francisco\n",
      "\u001b[92m\u001b[1m\n",
      "*****NEXT TASK*****\n",
      "\u001b[0m\u001b[0m\n",
      "2: Gather data on temperature, humidity, wind speed, and other relevant weather conditions\n",
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3mThought: I need to search for the current weather conditions in SF\n",
      "Action: Search\n",
      "Action Input: Current weather conditions in SF\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3mHigh 67F. Winds WNW at 10 to 15 mph. Clear to partly cloudy.\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I need to make a todo list\n",
      "Action: TODO\n",
      "Action Input: Create a weather report for SF today\u001b[0m\n",
      "Observation: \u001b[33;1m\u001b[1;3m\n",
      "\n",
      "1. Gather current weather data for SF, including temperature, wind speed, humidity, and precipitation.\n",
      "2. Research historical weather data for SF to compare current conditions.\n",
      "3. Analyze current and historical data to determine any trends or patterns.\n",
      "4. Create a visual representation of the data, such as a graph or chart.\n",
      "5. Write a summary of the weather report, including key findings and any relevant information.\n",
      "6. Publish the weather report on a website or other platform.\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
      "Final Answer: Today in San Francisco, the temperature is 67F with winds WNW at 10 to 15 mph. The sky is clear to partly cloudy.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n",
      "\u001b[93m\u001b[1m\n",
      "*****TASK RESULT*****\n",
      "\u001b[0m\u001b[0m\n",
      "Today in San Francisco, the temperature is 67F with winds WNW at 10 to 15 mph. The sky is clear to partly cloudy.\n",
      "\u001b[95m\u001b[1m\n",
      "*****TASK LIST*****\n",
      "\u001b[0m\u001b[0m\n",
      "3: Research current weather conditions in San Francisco\n",
      "4: Compare the current weather conditions in San Francisco to the average for this time of year.\n",
      "5: Identify any potential weather-related hazards in the area.\n",
      "6: Research any historical weather patterns in San Francisco.\n",
      "7: Analyze data to determine current weather trends\n",
      "8: Include any relevant data from nearby cities in the report.\n",
      "9: Include any relevant data from the National Weather Service in the report.\n",
      "10: Include any relevant data from local news sources in the report.\n",
      "11: Include any relevant data from online weather sources in the report.\n",
      "12: Include any relevant data from local meteorologists in the report.\n",
      "13: Include any relevant data from local weather stations in the report.\n",
      "14: Include any relevant data from satellite images in the report.\n",
      "15: Describe current weather conditions in San Francisco\n",
      "16: Discuss any upcoming weather changes\n",
      "17: Write a brief introduction to the weather report\n",
      "18: Summarize the weather report\n",
      "19: Proofread and edit the report\n",
      "20: Submit the report\n",
      "\u001b[92m\u001b[1m\n",
      "*****NEXT TASK*****\n",
      "\u001b[0m\u001b[0m\n",
      "3: Research current weather conditions in San Francisco\n",
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3mThought: I need to search for current weather conditions in San Francisco\n",
      "Action: Search\n",
      "Action Input: Current weather conditions in San Francisco\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3mTodaySun 04/09 High 67 路 1% Precip. ; TonightSun 04/09 Low 49 路 9% Precip. ; TomorrowMon 04/10 High 64 路 11% Precip.\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
      "Final Answer: Today in San Francisco, the high temperature is 67 degrees with 1% chance of precipitation. The low temperature tonight is 49 degrees with 9% chance of precipitation. Tomorrow's high temperature is 64 degrees with 11% chance of precipitation.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n",
      "\u001b[93m\u001b[1m\n",
      "*****TASK RESULT*****\n",
      "\u001b[0m\u001b[0m\n",
      "Today in San Francisco, the high temperature is 67 degrees with 1% chance of precipitation. The low temperature tonight is 49 degrees with 9% chance of precipitation. Tomorrow's high temperature is 64 degrees with 11% chance of precipitation.\n",
      "\u001b[91m\u001b[1m\n",
      "*****TASK ENDING*****\n",
      "\u001b[0m\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "{'objective': 'Write a weather report for SF today'}"
      ]
     },
     "execution_count": 54,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "baby_agi({\"objective\": OBJECTIVE})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "898a210b",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}