File size: 20,387 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "517a9fd4",
   "metadata": {},
   "source": [
    "# BabyAGI User Guide\n",
    "\n",
    "This notebook demonstrates how to implement [BabyAGI](https://github.com/yoheinakajima/babyagi/tree/main) by [Yohei Nakajima](https://twitter.com/yoheinakajima). BabyAGI is an AI agent that can generate and pretend to execute tasks based on a given objective.\n",
    "\n",
    "This guide will help you understand the components to create your own recursive agents.\n",
    "\n",
    "Although BabyAGI uses specific vectorstores/model providers (Pinecone, OpenAI), one of the benefits of implementing it with LangChain is that you can easily swap those out for different options. In this implementation we use a FAISS vectorstore (because it runs locally and is free)."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "556af556",
   "metadata": {},
   "source": [
    "## Install and Import Required Modules"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 116,
   "id": "c8a354b6",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "from collections import deque\n",
    "from typing import Dict, List, Optional, Any\n",
    "\n",
    "from langchain import LLMChain, OpenAI, PromptTemplate\n",
    "from langchain.embeddings import OpenAIEmbeddings\n",
    "from langchain.llms import BaseLLM\n",
    "from langchain.vectorstores.base import VectorStore\n",
    "from pydantic import BaseModel, Field\n",
    "from langchain.chains.base import Chain"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "09f70772",
   "metadata": {},
   "source": [
    "## Connect to the Vector Store\n",
    "\n",
    "Depending on what vectorstore you use, this step may look different."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 71,
   "id": "794045d4",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.vectorstores import FAISS\n",
    "from langchain.docstore import InMemoryDocstore"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 72,
   "id": "6e0305eb",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define your embedding model\n",
    "embeddings_model = OpenAIEmbeddings()\n",
    "# Initialize the vectorstore as empty\n",
    "import faiss\n",
    "\n",
    "embedding_size = 1536\n",
    "index = faiss.IndexFlatL2(embedding_size)\n",
    "vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0f3b72bf",
   "metadata": {},
   "source": [
    "## Define the Chains\n",
    "\n",
    "BabyAGI relies on three LLM chains:\n",
    "- Task creation chain to select new tasks to add to the list\n",
    "- Task prioritization chain to re-prioritize tasks\n",
    "- Execution Chain to execute the tasks"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 73,
   "id": "bf4bd5cd",
   "metadata": {},
   "outputs": [],
   "source": [
    "class TaskCreationChain(LLMChain):\n",
    "    \"\"\"Chain to generates tasks.\"\"\"\n",
    "\n",
    "    @classmethod\n",
    "    def from_llm(cls, llm: BaseLLM, verbose: bool = True) -> LLMChain:\n",
    "        \"\"\"Get the response parser.\"\"\"\n",
    "        task_creation_template = (\n",
    "            \"You are a task creation AI that uses the result of an execution agent\"\n",
    "            \" to create new tasks with the following objective: {objective},\"\n",
    "            \" The last completed task has the result: {result}.\"\n",
    "            \" This result was based on this task description: {task_description}.\"\n",
    "            \" These are incomplete tasks: {incomplete_tasks}.\"\n",
    "            \" Based on the result, create new tasks to be completed\"\n",
    "            \" by the AI system that do not overlap with incomplete tasks.\"\n",
    "            \" Return the tasks as an array.\"\n",
    "        )\n",
    "        prompt = PromptTemplate(\n",
    "            template=task_creation_template,\n",
    "            input_variables=[\n",
    "                \"result\",\n",
    "                \"task_description\",\n",
    "                \"incomplete_tasks\",\n",
    "                \"objective\",\n",
    "            ],\n",
    "        )\n",
    "        return cls(prompt=prompt, llm=llm, verbose=verbose)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 74,
   "id": "b6488ffe",
   "metadata": {},
   "outputs": [],
   "source": [
    "class TaskPrioritizationChain(LLMChain):\n",
    "    \"\"\"Chain to prioritize tasks.\"\"\"\n",
    "\n",
    "    @classmethod\n",
    "    def from_llm(cls, llm: BaseLLM, verbose: bool = True) -> LLMChain:\n",
    "        \"\"\"Get the response parser.\"\"\"\n",
    "        task_prioritization_template = (\n",
    "            \"You are a task prioritization AI tasked with cleaning the formatting of and reprioritizing\"\n",
    "            \" the following tasks: {task_names}.\"\n",
    "            \" Consider the ultimate objective of your team: {objective}.\"\n",
    "            \" Do not remove any tasks. Return the result as a numbered list, like:\"\n",
    "            \" #. First task\"\n",
    "            \" #. Second task\"\n",
    "            \" Start the task list with number {next_task_id}.\"\n",
    "        )\n",
    "        prompt = PromptTemplate(\n",
    "            template=task_prioritization_template,\n",
    "            input_variables=[\"task_names\", \"next_task_id\", \"objective\"],\n",
    "        )\n",
    "        return cls(prompt=prompt, llm=llm, verbose=verbose)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 84,
   "id": "b43cd580",
   "metadata": {},
   "outputs": [],
   "source": [
    "class ExecutionChain(LLMChain):\n",
    "    \"\"\"Chain to execute tasks.\"\"\"\n",
    "\n",
    "    @classmethod\n",
    "    def from_llm(cls, llm: BaseLLM, verbose: bool = True) -> LLMChain:\n",
    "        \"\"\"Get the response parser.\"\"\"\n",
    "        execution_template = (\n",
    "            \"You are an AI who performs one task based on the following objective: {objective}.\"\n",
    "            \" Take into account these previously completed tasks: {context}.\"\n",
    "            \" Your task: {task}.\"\n",
    "            \" Response:\"\n",
    "        )\n",
    "        prompt = PromptTemplate(\n",
    "            template=execution_template,\n",
    "            input_variables=[\"objective\", \"context\", \"task\"],\n",
    "        )\n",
    "        return cls(prompt=prompt, llm=llm, verbose=verbose)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3ad996c5",
   "metadata": {},
   "source": [
    "### Define the BabyAGI Controller\n",
    "\n",
    "BabyAGI composes the chains defined above in a (potentially-)infinite loop."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 85,
   "id": "0ada0636",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_next_task(\n",
    "    task_creation_chain: LLMChain,\n",
    "    result: Dict,\n",
    "    task_description: str,\n",
    "    task_list: List[str],\n",
    "    objective: str,\n",
    ") -> List[Dict]:\n",
    "    \"\"\"Get the next task.\"\"\"\n",
    "    incomplete_tasks = \", \".join(task_list)\n",
    "    response = task_creation_chain.run(\n",
    "        result=result,\n",
    "        task_description=task_description,\n",
    "        incomplete_tasks=incomplete_tasks,\n",
    "        objective=objective,\n",
    "    )\n",
    "    new_tasks = response.split(\"\\n\")\n",
    "    return [{\"task_name\": task_name} for task_name in new_tasks if task_name.strip()]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 86,
   "id": "d35250ad",
   "metadata": {},
   "outputs": [],
   "source": [
    "def prioritize_tasks(\n",
    "    task_prioritization_chain: LLMChain,\n",
    "    this_task_id: int,\n",
    "    task_list: List[Dict],\n",
    "    objective: str,\n",
    ") -> List[Dict]:\n",
    "    \"\"\"Prioritize tasks.\"\"\"\n",
    "    task_names = [t[\"task_name\"] for t in task_list]\n",
    "    next_task_id = int(this_task_id) + 1\n",
    "    response = task_prioritization_chain.run(\n",
    "        task_names=task_names, next_task_id=next_task_id, objective=objective\n",
    "    )\n",
    "    new_tasks = response.split(\"\\n\")\n",
    "    prioritized_task_list = []\n",
    "    for task_string in new_tasks:\n",
    "        if not task_string.strip():\n",
    "            continue\n",
    "        task_parts = task_string.strip().split(\".\", 1)\n",
    "        if len(task_parts) == 2:\n",
    "            task_id = task_parts[0].strip()\n",
    "            task_name = task_parts[1].strip()\n",
    "            prioritized_task_list.append({\"task_id\": task_id, \"task_name\": task_name})\n",
    "    return prioritized_task_list"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 87,
   "id": "e3f1840c",
   "metadata": {},
   "outputs": [],
   "source": [
    "def _get_top_tasks(vectorstore, query: str, k: int) -> List[str]:\n",
    "    \"\"\"Get the top k tasks based on the query.\"\"\"\n",
    "    results = vectorstore.similarity_search_with_score(query, k=k)\n",
    "    if not results:\n",
    "        return []\n",
    "    sorted_results, _ = zip(*sorted(results, key=lambda x: x[1], reverse=True))\n",
    "    return [str(item.metadata[\"task\"]) for item in sorted_results]\n",
    "\n",
    "\n",
    "def execute_task(\n",
    "    vectorstore, execution_chain: LLMChain, objective: str, task: str, k: int = 5\n",
    ") -> str:\n",
    "    \"\"\"Execute a task.\"\"\"\n",
    "    context = _get_top_tasks(vectorstore, query=objective, k=k)\n",
    "    return execution_chain.run(objective=objective, context=context, task=task)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 137,
   "id": "1e978938",
   "metadata": {},
   "outputs": [],
   "source": [
    "class BabyAGI(Chain, BaseModel):\n",
    "    \"\"\"Controller model for the BabyAGI agent.\"\"\"\n",
    "\n",
    "    task_list: deque = Field(default_factory=deque)\n",
    "    task_creation_chain: TaskCreationChain = Field(...)\n",
    "    task_prioritization_chain: TaskPrioritizationChain = Field(...)\n",
    "    execution_chain: ExecutionChain = Field(...)\n",
    "    task_id_counter: int = Field(1)\n",
    "    vectorstore: VectorStore = Field(init=False)\n",
    "    max_iterations: Optional[int] = None\n",
    "\n",
    "    class Config:\n",
    "        \"\"\"Configuration for this pydantic object.\"\"\"\n",
    "\n",
    "        arbitrary_types_allowed = True\n",
    "\n",
    "    def add_task(self, task: Dict):\n",
    "        self.task_list.append(task)\n",
    "\n",
    "    def print_task_list(self):\n",
    "        print(\"\\033[95m\\033[1m\" + \"\\n*****TASK LIST*****\\n\" + \"\\033[0m\\033[0m\")\n",
    "        for t in self.task_list:\n",
    "            print(str(t[\"task_id\"]) + \": \" + t[\"task_name\"])\n",
    "\n",
    "    def print_next_task(self, task: Dict):\n",
    "        print(\"\\033[92m\\033[1m\" + \"\\n*****NEXT TASK*****\\n\" + \"\\033[0m\\033[0m\")\n",
    "        print(str(task[\"task_id\"]) + \": \" + task[\"task_name\"])\n",
    "\n",
    "    def print_task_result(self, result: str):\n",
    "        print(\"\\033[93m\\033[1m\" + \"\\n*****TASK RESULT*****\\n\" + \"\\033[0m\\033[0m\")\n",
    "        print(result)\n",
    "\n",
    "    @property\n",
    "    def input_keys(self) -> List[str]:\n",
    "        return [\"objective\"]\n",
    "\n",
    "    @property\n",
    "    def output_keys(self) -> List[str]:\n",
    "        return []\n",
    "\n",
    "    def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]:\n",
    "        \"\"\"Run the agent.\"\"\"\n",
    "        objective = inputs[\"objective\"]\n",
    "        first_task = inputs.get(\"first_task\", \"Make a todo list\")\n",
    "        self.add_task({\"task_id\": 1, \"task_name\": first_task})\n",
    "        num_iters = 0\n",
    "        while True:\n",
    "            if self.task_list:\n",
    "                self.print_task_list()\n",
    "\n",
    "                # Step 1: Pull the first task\n",
    "                task = self.task_list.popleft()\n",
    "                self.print_next_task(task)\n",
    "\n",
    "                # Step 2: Execute the task\n",
    "                result = execute_task(\n",
    "                    self.vectorstore, self.execution_chain, objective, task[\"task_name\"]\n",
    "                )\n",
    "                this_task_id = int(task[\"task_id\"])\n",
    "                self.print_task_result(result)\n",
    "\n",
    "                # Step 3: Store the result in Pinecone\n",
    "                result_id = f\"result_{task['task_id']}\"\n",
    "                self.vectorstore.add_texts(\n",
    "                    texts=[result],\n",
    "                    metadatas=[{\"task\": task[\"task_name\"]}],\n",
    "                    ids=[result_id],\n",
    "                )\n",
    "\n",
    "                # Step 4: Create new tasks and reprioritize task list\n",
    "                new_tasks = get_next_task(\n",
    "                    self.task_creation_chain,\n",
    "                    result,\n",
    "                    task[\"task_name\"],\n",
    "                    [t[\"task_name\"] for t in self.task_list],\n",
    "                    objective,\n",
    "                )\n",
    "                for new_task in new_tasks:\n",
    "                    self.task_id_counter += 1\n",
    "                    new_task.update({\"task_id\": self.task_id_counter})\n",
    "                    self.add_task(new_task)\n",
    "                self.task_list = deque(\n",
    "                    prioritize_tasks(\n",
    "                        self.task_prioritization_chain,\n",
    "                        this_task_id,\n",
    "                        list(self.task_list),\n",
    "                        objective,\n",
    "                    )\n",
    "                )\n",
    "            num_iters += 1\n",
    "            if self.max_iterations is not None and num_iters == self.max_iterations:\n",
    "                print(\n",
    "                    \"\\033[91m\\033[1m\" + \"\\n*****TASK ENDING*****\\n\" + \"\\033[0m\\033[0m\"\n",
    "                )\n",
    "                break\n",
    "        return {}\n",
    "\n",
    "    @classmethod\n",
    "    def from_llm(\n",
    "        cls, llm: BaseLLM, vectorstore: VectorStore, verbose: bool = False, **kwargs\n",
    "    ) -> \"BabyAGI\":\n",
    "        \"\"\"Initialize the BabyAGI Controller.\"\"\"\n",
    "        task_creation_chain = TaskCreationChain.from_llm(llm, verbose=verbose)\n",
    "        task_prioritization_chain = TaskPrioritizationChain.from_llm(\n",
    "            llm, verbose=verbose\n",
    "        )\n",
    "        execution_chain = ExecutionChain.from_llm(llm, verbose=verbose)\n",
    "        return cls(\n",
    "            task_creation_chain=task_creation_chain,\n",
    "            task_prioritization_chain=task_prioritization_chain,\n",
    "            execution_chain=execution_chain,\n",
    "            vectorstore=vectorstore,\n",
    "            **kwargs,\n",
    "        )"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "05ba762e",
   "metadata": {},
   "source": [
    "### Run the BabyAGI\n",
    "\n",
    "Now it's time to create the BabyAGI controller and watch it try to accomplish your objective."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 138,
   "id": "3d220b69",
   "metadata": {},
   "outputs": [],
   "source": [
    "OBJECTIVE = \"Write a weather report for SF today\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 139,
   "id": "8a8e5543",
   "metadata": {},
   "outputs": [],
   "source": [
    "llm = OpenAI(temperature=0)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 140,
   "id": "3d69899b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Logging of LLMChains\n",
    "verbose = False\n",
    "# If None, will keep on going forever\n",
    "max_iterations: Optional[int] = 3\n",
    "baby_agi = BabyAGI.from_llm(\n",
    "    llm=llm, vectorstore=vectorstore, verbose=verbose, max_iterations=max_iterations\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 141,
   "id": "f7957b51",
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[95m\u001b[1m\n",
      "*****TASK LIST*****\n",
      "\u001b[0m\u001b[0m\n",
      "1: Make a todo list\n",
      "\u001b[92m\u001b[1m\n",
      "*****NEXT TASK*****\n",
      "\u001b[0m\u001b[0m\n",
      "1: Make a todo list\n",
      "\u001b[93m\u001b[1m\n",
      "*****TASK RESULT*****\n",
      "\u001b[0m\u001b[0m\n",
      "\n",
      "\n",
      "1. Check the temperature range for the day.\n",
      "2. Gather temperature data for SF today.\n",
      "3. Analyze the temperature data and create a weather report.\n",
      "4. Publish the weather report.\n",
      "\u001b[95m\u001b[1m\n",
      "*****TASK LIST*****\n",
      "\u001b[0m\u001b[0m\n",
      "2: Gather data on the expected temperature range for the day.\n",
      "3: Collect data on the expected precipitation for the day.\n",
      "4: Analyze the data and create a weather report.\n",
      "5: Check the current weather conditions in SF.\n",
      "6: Publish the weather report.\n",
      "\u001b[92m\u001b[1m\n",
      "*****NEXT TASK*****\n",
      "\u001b[0m\u001b[0m\n",
      "2: Gather data on the expected temperature range for the day.\n",
      "\u001b[93m\u001b[1m\n",
      "*****TASK RESULT*****\n",
      "\u001b[0m\u001b[0m\n",
      "\n",
      "\n",
      "I have gathered data on the expected temperature range for the day in San Francisco. The forecast is for temperatures to range from a low of 55 degrees Fahrenheit to a high of 68 degrees Fahrenheit.\n",
      "\u001b[95m\u001b[1m\n",
      "*****TASK LIST*****\n",
      "\u001b[0m\u001b[0m\n",
      "3: Check the current weather conditions in SF.\n",
      "4: Calculate the average temperature for the day in San Francisco.\n",
      "5: Determine the probability of precipitation for the day in San Francisco.\n",
      "6: Identify any potential weather warnings or advisories for the day in San Francisco.\n",
      "7: Research any historical weather patterns for the day in San Francisco.\n",
      "8: Compare the expected temperature range to the historical average for the day in San Francisco.\n",
      "9: Collect data on the expected precipitation for the day.\n",
      "10: Analyze the data and create a weather report.\n",
      "11: Publish the weather report.\n",
      "\u001b[92m\u001b[1m\n",
      "*****NEXT TASK*****\n",
      "\u001b[0m\u001b[0m\n",
      "3: Check the current weather conditions in SF.\n",
      "\u001b[93m\u001b[1m\n",
      "*****TASK RESULT*****\n",
      "\u001b[0m\u001b[0m\n",
      "\n",
      "\n",
      "I am checking the current weather conditions in SF. According to the data I have gathered, the temperature in SF today is currently around 65 degrees Fahrenheit with clear skies. The temperature range for the day is expected to be between 60 and 70 degrees Fahrenheit.\n",
      "\u001b[91m\u001b[1m\n",
      "*****TASK ENDING*****\n",
      "\u001b[0m\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "{'objective': 'Write a weather report for SF today'}"
      ]
     },
     "execution_count": 141,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "baby_agi({\"objective\": OBJECTIVE})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "898a210b",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}