File size: 5,600 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "9355a547",
   "metadata": {},
   "source": [
    "# How to work with partial Prompt Templates\n",
    "\n",
    "A prompt template is a class with a `.format` method which takes in a key-value map and returns a string (a prompt) to pass to the language model. Like other methods, it can make sense to \"partial\" a prompt template - eg pass in a subset of the required values, as to create a new prompt template which expects only the remaining subset of values.\n",
    "\n",
    "LangChain supports this in two ways: we allow for partially formatted prompts (1) with string values, (2) with functions that return string values. These two different ways support different use cases. In the documentation below we go over the motivations for both use cases as well as how to do it in LangChain.\n",
    "\n",
    "## Partial With Strings\n",
    "\n",
    "One common use case for wanting to partial a prompt template is if you get some of the variables before others. For example, suppose you have a prompt template that requires two variables, `foo` and `baz`. If you get the `foo` value early on in the chain, but the `baz` value later, it can be annoying to wait until you have both variables in the same place to pass them to the prompt template. Instead, you can partial the prompt template with the `foo` value, and then pass the partialed prompt template along and just use that. Below is an example of doing this:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "643af5da",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.prompts import PromptTemplate"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "4080d8d7",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "foobaz\n"
     ]
    }
   ],
   "source": [
    "prompt = PromptTemplate(template=\"{foo}{bar}\", input_variables=[\"foo\", \"bar\"])\n",
    "partial_prompt = prompt.partial(foo=\"foo\");\n",
    "print(partial_prompt.format(bar=\"baz\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9986766e",
   "metadata": {},
   "source": [
    "You can also just initialize the prompt with the partialed variables."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "e2ce95b3",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "foobaz\n"
     ]
    }
   ],
   "source": [
    "prompt = PromptTemplate(template=\"{foo}{bar}\", input_variables=[\"bar\"], partial_variables={\"foo\": \"foo\"})\n",
    "print(prompt.format(bar=\"baz\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a9c66f83",
   "metadata": {},
   "source": [
    "## Partial With Functions\n",
    "\n",
    "The other common use is to partial with a function. The use case for this is when you have a variable you know that you always want to fetch in a common way. A prime example of this is with date or time. Imagine you have a prompt which you always want to have the current date. You can't hard code it in the prompt, and passing it along with the other input variables is a bit annoying. In this case, it's very handy to be able to partial the prompt with a function that always returns the current date."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "d0712d8a",
   "metadata": {},
   "outputs": [],
   "source": [
    "from datetime import datetime\n",
    "\n",
    "def _get_datetime():\n",
    "    now = datetime.now()\n",
    "    return now.strftime(\"%m/%d/%Y, %H:%M:%S\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "4cbcb666",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Tell me a funny joke about the day 02/27/2023, 22:15:16\n"
     ]
    }
   ],
   "source": [
    "prompt = PromptTemplate(\n",
    "    template=\"Tell me a {adjective} joke about the day {date}\", \n",
    "    input_variables=[\"adjective\", \"date\"]\n",
    ");\n",
    "partial_prompt = prompt.partial(date=_get_datetime)\n",
    "print(partial_prompt.format(adjective=\"funny\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ffed6811",
   "metadata": {},
   "source": [
    "You can also just initialize the prompt with the partialed variables, which often makes more sense in this workflow."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "96285b25",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Tell me a funny joke about the day 02/27/2023, 22:15:16\n"
     ]
    }
   ],
   "source": [
    "prompt = PromptTemplate(\n",
    "    template=\"Tell me a {adjective} joke about the day {date}\", \n",
    "    input_variables=[\"adjective\"],\n",
    "    partial_variables={\"date\": _get_datetime}\n",
    ");\n",
    "print(prompt.format(adjective=\"funny\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4bff16f7",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}