File size: 4,965 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "a1ae632a",
   "metadata": {},
   "source": [
    "# PydanticOutputParser\n",
    "This output parser allows users to specify an arbitrary JSON schema and query LLMs for JSON outputs that conform to that schema.\n",
    "\n",
    "Keep in mind that large language models are leaky abstractions! You'll have to use an LLM with sufficient capacity to generate well-formed JSON. In the OpenAI family, DaVinci can do reliably but Curie's ability already drops off dramatically. \n",
    "\n",
    "Use Pydantic to declare your data model. Pydantic's BaseModel like a Python dataclass, but with actual type checking + coercion."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "b322c447",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.prompts import PromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate\n",
    "from langchain.llms import OpenAI\n",
    "from langchain.chat_models import ChatOpenAI"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "cba6d8e3",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.output_parsers import PydanticOutputParser\n",
    "from pydantic import BaseModel, Field, validator\n",
    "from typing import List"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "0a203100",
   "metadata": {},
   "outputs": [],
   "source": [
    "model_name = 'text-davinci-003'\n",
    "temperature = 0.0\n",
    "model = OpenAI(model_name=model_name, temperature=temperature)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "b3f16168",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Joke(setup='Why did the chicken cross the road?', punchline='To get to the other side!')"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Define your desired data structure.\n",
    "class Joke(BaseModel):\n",
    "    setup: str = Field(description=\"question to set up a joke\")\n",
    "    punchline: str = Field(description=\"answer to resolve the joke\")\n",
    "    \n",
    "    # You can add custom validation logic easily with Pydantic.\n",
    "    @validator('setup')\n",
    "    def question_ends_with_question_mark(cls, field):\n",
    "        if field[-1] != '?':\n",
    "            raise ValueError(\"Badly formed question!\")\n",
    "        return field\n",
    "\n",
    "# And a query intented to prompt a language model to populate the data structure.\n",
    "joke_query = \"Tell me a joke.\"\n",
    "\n",
    "# Set up a parser + inject instructions into the prompt template.\n",
    "parser = PydanticOutputParser(pydantic_object=Joke)\n",
    "\n",
    "prompt = PromptTemplate(\n",
    "    template=\"Answer the user query.\\n{format_instructions}\\n{query}\\n\",\n",
    "    input_variables=[\"query\"],\n",
    "    partial_variables={\"format_instructions\": parser.get_format_instructions()}\n",
    ")\n",
    "\n",
    "_input = prompt.format_prompt(query=joke_query)\n",
    "\n",
    "output = model(_input.to_string())\n",
    "\n",
    "parser.parse(output)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "03049f88",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Actor(name='Tom Hanks', film_names=['Forrest Gump', 'Saving Private Ryan', 'The Green Mile', 'Cast Away', 'Toy Story'])"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Here's another example, but with a compound typed field.\n",
    "class Actor(BaseModel):\n",
    "    name: str = Field(description=\"name of an actor\")\n",
    "    film_names: List[str] = Field(description=\"list of names of films they starred in\")\n",
    "        \n",
    "actor_query = \"Generate the filmography for a random actor.\"\n",
    "\n",
    "parser = PydanticOutputParser(pydantic_object=Actor)\n",
    "\n",
    "prompt = PromptTemplate(\n",
    "    template=\"Answer the user query.\\n{format_instructions}\\n{query}\\n\",\n",
    "    input_variables=[\"query\"],\n",
    "    partial_variables={\"format_instructions\": parser.get_format_instructions()}\n",
    ")\n",
    "\n",
    "_input = prompt.format_prompt(query=actor_query)\n",
    "\n",
    "output = model(_input.to_string())\n",
    "\n",
    "parser.parse(output)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}