Spaces:
Sleeping
Sleeping
File size: 5,406 Bytes
cfd3735 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
{
"cells": [
{
"cell_type": "markdown",
"id": "3651e424",
"metadata": {},
"source": [
"# Getting Started\n",
"\n",
"This section contains everything related to prompts. A prompt is the value passed into the Language Model. This value can either be a string (for LLMs) or a list of messages (for Chat Models).\n",
"\n",
"The data types of these prompts are rather simple, but their construction is anything but. Value props of LangChain here include:\n",
"\n",
"- A standard interface for string prompts and message prompts\n",
"- A standard (to get started) interface for string prompt templates and message prompt templates\n",
"- Example Selectors: methods for inserting examples into the prompt for the language model to follow\n",
"- OutputParsers: methods for inserting instructions into the prompt as the format in which the language model should output information, as well as methods for then parsing that string output into a format.\n",
"\n",
"We have in depth documentation for specific types of string prompts, specific types of chat prompts, example selectors, and output parsers.\n",
"\n",
"Here, we cover a quick-start for a standard interface for getting started with simple prompts."
]
},
{
"cell_type": "markdown",
"id": "ff34414d",
"metadata": {},
"source": [
"## PromptTemplates\n",
"\n",
"PromptTemplates are responsible for constructing a prompt value. These PromptTemplates can do things like formatting, example selection, and more. At a high level, these are basically objects that expose a `format_prompt` method for constructing a prompt. Under the hood, ANYTHING can happen."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "7ce42639",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate, ChatPromptTemplate"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "5a178697",
"metadata": {},
"outputs": [],
"source": [
"string_prompt = PromptTemplate.from_template(\"tell me a joke about {subject}\")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "f4ef6d6b",
"metadata": {},
"outputs": [],
"source": [
"chat_prompt = ChatPromptTemplate.from_template(\"tell me a joke about {subject}\")"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "5f16c8f1",
"metadata": {},
"outputs": [],
"source": [
"string_prompt_value = string_prompt.format_prompt(subject=\"soccer\")"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "863755ea",
"metadata": {},
"outputs": [],
"source": [
"chat_prompt_value = chat_prompt.format_prompt(subject=\"soccer\")"
]
},
{
"cell_type": "markdown",
"id": "8b3d8511",
"metadata": {},
"source": [
"## `to_string`\n",
"\n",
"This is what is called when passing to an LLM (which expects raw text)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "1964a8a0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'tell me a joke about soccer'"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"string_prompt_value.to_string()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "bf6c94e9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Human: tell me a joke about soccer'"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat_prompt_value.to_string()"
]
},
{
"cell_type": "markdown",
"id": "c0825af8",
"metadata": {},
"source": [
"## `to_messages`\n",
"\n",
"This is what is called when passing to ChatModel (which expects a list of messages)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "e4da46f3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content='tell me a joke about soccer', additional_kwargs={}, example=False)]"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"string_prompt_value.to_messages()"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "eae84b88",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content='tell me a joke about soccer', additional_kwargs={}, example=False)]"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat_prompt_value.to_messages()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a34fa440",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|