Spaces:
Sleeping
Sleeping
File size: 11,940 Bytes
cfd3735 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "6488fdaf",
"metadata": {},
"source": [
"# Chat Prompt Template\n",
"\n",
"[Chat Models](../models/chat.rst) takes a list of chat messages as input - this list commonly referred to as a prompt.\n",
"These chat messages differ from raw string (which you would pass into a [LLM](../models/llms.rst) model) in that every message is associated with a role.\n",
"\n",
"For example, in OpenAI [Chat Completion API](https://platform.openai.com/docs/guides/chat/introduction), a chat message can be associated with the AI, human or system role. The model is supposed to follow instruction from system chat message more closely.\n",
"\n",
"Therefore, LangChain provides several related prompt templates to make constructing and working with prompts easily. You are encouraged to use these chat related prompt templates instead of `PromptTemplate` when querying chat models to fully exploit the potential of underlying chat model.\n"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "7647a621",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.prompts import (\n",
" ChatPromptTemplate,\n",
" PromptTemplate,\n",
" SystemMessagePromptTemplate,\n",
" AIMessagePromptTemplate,\n",
" HumanMessagePromptTemplate,\n",
")\n",
"from langchain.schema import (\n",
" AIMessage,\n",
" HumanMessage,\n",
" SystemMessage\n",
")"
]
},
{
"cell_type": "markdown",
"id": "acb4a2f6",
"metadata": {},
"source": [
"To create a message template associated with a role, you use `MessagePromptTemplate`. \n",
"\n",
"For convenience, there is a `from_template` method exposed on the template. If you were to use this template, this is what it would look like:"
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "3124f5e9",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"template=\"You are a helpful assistant that translates {input_language} to {output_language}.\"\n",
"system_message_prompt = SystemMessagePromptTemplate.from_template(template)\n",
"human_template=\"{text}\"\n",
"human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)"
]
},
{
"cell_type": "markdown",
"id": "c8b08cda-7c57-4c15-a1e5-80627cfa9cbd",
"metadata": {},
"source": [
"If you wanted to construct the `MessagePromptTemplate` more directly, you could create a PromptTemplate outside and then pass it in, eg:"
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "5a8d249e",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"prompt=PromptTemplate(\n",
" template=\"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" input_variables=[\"input_language\", \"output_language\"],\n",
")\n",
"system_message_prompt_2 = SystemMessagePromptTemplate(prompt=prompt)\n",
"\n",
"assert system_message_prompt == system_message_prompt_2"
]
},
{
"cell_type": "markdown",
"id": "96836c5c-41f8-4073-95ac-ea1daab2e00e",
"metadata": {},
"source": [
"After that, you can build a `ChatPromptTemplate` from one or more `MessagePromptTemplates`. You can use `ChatPromptTemplate`'s `format_prompt` -- this returns a `PromptValue`, which you can convert to a string or Message object, depending on whether you want to use the formatted value as input to an llm or chat model."
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "9c7e2e6f",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"[SystemMessage(content='You are a helpful assistant that translates English to French.', additional_kwargs={}),\n",
" HumanMessage(content='I love programming.', additional_kwargs={})]"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])\n",
"\n",
"# get a chat completion from the formatted messages\n",
"chat_prompt.format_prompt(input_language=\"English\", output_language=\"French\", text=\"I love programming.\").to_messages()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "0899f681-012e-4687-a754-199a9a396738",
"metadata": {
"tags": []
},
"source": [
"## Format output\n",
"\n",
"The output of the format method is available as string, list of messages and `ChatPromptValue`"
]
},
{
"cell_type": "markdown",
"id": "584166de-0c31-4bc9-bf7a-5b359e7173d8",
"metadata": {},
"source": [
"As string:"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "2f6c7ad1-def5-41dc-a4fe-3731dc8917f9",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"'System: You are a helpful assistant that translates English to French.\\nHuman: I love programming.'"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"output = chat_prompt.format(input_language=\"English\", output_language=\"French\", text=\"I love programming.\")\n",
"output"
]
},
{
"cell_type": "code",
"execution_count": 40,
"id": "144b3368-43f3-49fa-885f-3f3470e9ab7e",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# or alternatively \n",
"output_2 = chat_prompt.format_prompt(input_language=\"English\", output_language=\"French\", text=\"I love programming.\").to_string()\n",
"\n",
"assert output == output_2"
]
},
{
"cell_type": "markdown",
"id": "51970399-c2e1-4c9b-8003-6f5b1236fda8",
"metadata": {},
"source": [
"As `ChatPromptValue`"
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "681ce4a7-d972-4cdf-ac77-ec35182fd352",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"ChatPromptValue(messages=[SystemMessage(content='You are a helpful assistant that translates English to French.', additional_kwargs={}), HumanMessage(content='I love programming.', additional_kwargs={})])"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat_prompt.format_prompt(input_language=\"English\", output_language=\"French\", text=\"I love programming.\")"
]
},
{
"cell_type": "markdown",
"id": "61041810-4418-4406-9c8a-91c9034c9752",
"metadata": {},
"source": [
"As list of Message objects"
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "4ec2f166-1ef9-4071-8c37-fcfbd3f4bc29",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"[SystemMessage(content='You are a helpful assistant that translates English to French.', additional_kwargs={}),\n",
" HumanMessage(content='I love programming.', additional_kwargs={})]"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat_prompt.format_prompt(input_language=\"English\", output_language=\"French\", text=\"I love programming.\").to_messages()"
]
},
{
"cell_type": "markdown",
"id": "73dcd3a2-ad6d-4b7b-ab21-1d9e417f959e",
"metadata": {},
"source": [
"## Different types of `MessagePromptTemplate`\n",
"\n",
"LangChain provides different types of `MessagePromptTemplate`. The most commonly used are `AIMessagePromptTemplate`, `SystemMessagePromptTemplate` and `HumanMessagePromptTemplate`, which create an AI message, system message and human message respectively.\n",
"\n",
"However, in cases where the chat model supports taking chat message with arbitrary role, you can use `ChatMessagePromptTemplate`, which allows user to specify the role name."
]
},
{
"cell_type": "code",
"execution_count": 45,
"id": "55a21b1f-9cdc-4072-a41d-695b00dd11e6",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"ChatMessage(content='May the force be with you', additional_kwargs={}, role='Jedi')"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.prompts import ChatMessagePromptTemplate\n",
"\n",
"prompt = \"May the {subject} be with you\"\n",
"\n",
"chat_message_prompt = ChatMessagePromptTemplate.from_template(role=\"Jedi\", template=prompt)\n",
"chat_message_prompt.format(subject=\"force\")"
]
},
{
"cell_type": "markdown",
"id": "cd6bf82b-4709-4683-b215-6b7c468f3347",
"metadata": {},
"source": [
"LangChain also provides `MessagesPlaceholder`, which gives you full control of what messages to be rendered during formatting. This can be useful when you are uncertain of what role you should be using for your message prompt templates or when you wish to insert a list of messages during formatting."
]
},
{
"cell_type": "code",
"execution_count": 46,
"id": "9f034650-5e50-4bc3-80f8-5e428ca6444d",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.prompts import MessagesPlaceholder\n",
"\n",
"human_prompt = \"Summarize our conversation so far in {word_count} words.\"\n",
"human_message_template = HumanMessagePromptTemplate.from_template(human_prompt)\n",
"\n",
"chat_prompt = ChatPromptTemplate.from_messages([MessagesPlaceholder(variable_name=\"conversation\"), human_message_template])"
]
},
{
"cell_type": "code",
"execution_count": 47,
"id": "9789e8e7-b3f9-4391-a85c-373e576107b3",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content='What is the best way to learn programming?', additional_kwargs={}),\n",
" AIMessage(content='1. Choose a programming language: Decide on a programming language that you want to learn. \\n\\n2. Start with the basics: Familiarize yourself with the basic programming concepts such as variables, data types and control structures.\\n\\n3. Practice, practice, practice: The best way to learn programming is through hands-on experience', additional_kwargs={}),\n",
" HumanMessage(content='Summarize our conversation so far in 10 words.', additional_kwargs={})]"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"human_message = HumanMessage(content=\"What is the best way to learn programming?\")\n",
"ai_message = AIMessage(content=\"\"\"\\\n",
"1. Choose a programming language: Decide on a programming language that you want to learn. \n",
"\n",
"2. Start with the basics: Familiarize yourself with the basic programming concepts such as variables, data types and control structures.\n",
"\n",
"3. Practice, practice, practice: The best way to learn programming is through hands-on experience\\\n",
"\"\"\")\n",
"\n",
"chat_prompt.format_prompt(conversation=[human_message, ai_message], word_count=\"10\").to_messages()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|