File size: 2,798 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "fff4734f",
   "metadata": {},
   "source": [
    "# TensorflowHub\n",
    "Let's load the TensorflowHub Embedding class."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "f822104b",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.embeddings import TensorflowHubEmbeddings"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "bac84e46",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2023-01-30 23:53:01.652176: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA\n",
      "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
      "2023-01-30 23:53:34.362802: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA\n",
      "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
     ]
    }
   ],
   "source": [
    "embeddings = TensorflowHubEmbeddings()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "4790d770",
   "metadata": {},
   "outputs": [],
   "source": [
    "text = \"This is a test document.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "f556dcdb",
   "metadata": {},
   "outputs": [],
   "source": [
    "query_result = embeddings.embed_query(text)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "76f1b752",
   "metadata": {},
   "outputs": [],
   "source": [
    "doc_results = embeddings.embed_documents([\"foo\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fff99b21",
   "metadata": {},
   "outputs": [],
   "source": [
    "doc_results"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "aaad49f8",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  },
  "vscode": {
   "interpreter": {
    "hash": "7377c2ccc78bc62c2683122d48c8cd1fb85a53850a1b1fc29736ed39852c9885"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}