File size: 3,383 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "eb1c0ea9",
   "metadata": {},
   "source": [
    "# Aleph Alpha\n",
    "\n",
    "There are two possible ways to use Aleph Alpha's semantic embeddings. If you have texts with a dissimilar structure (e.g. a Document and a Query) you would want to use asymmetric embeddings. Conversely, for texts with comparable structures, symmetric embeddings are the suggested approach."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9ecc84f9",
   "metadata": {},
   "source": [
    "## Asymmetric"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "8a920a89",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.embeddings import AlephAlphaAsymmetricSemanticEmbedding"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "f2d04da3",
   "metadata": {},
   "outputs": [],
   "source": [
    "document = \"This is a content of the document\"\n",
    "query = \"What is the contnt of the document?\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e6ecde96",
   "metadata": {},
   "outputs": [],
   "source": [
    "embeddings = AlephAlphaAsymmetricSemanticEmbedding()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "90e68411",
   "metadata": {},
   "outputs": [],
   "source": [
    "doc_result = embeddings.embed_documents([document])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "55903233",
   "metadata": {},
   "outputs": [],
   "source": [
    "query_result = embeddings.embed_query(query)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b8c00aab",
   "metadata": {},
   "source": [
    "## Symmetric"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "eabb763a",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.embeddings import AlephAlphaSymmetricSemanticEmbedding"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "0ad799f7",
   "metadata": {},
   "outputs": [],
   "source": [
    "text = \"This is a test text\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "af86dc10",
   "metadata": {},
   "outputs": [],
   "source": [
    "embeddings = AlephAlphaSymmetricSemanticEmbedding()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d292536f",
   "metadata": {},
   "outputs": [],
   "source": [
    "doc_result = embeddings.embed_documents([text])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c704a7cf",
   "metadata": {},
   "outputs": [],
   "source": [
    "query_result = embeddings.embed_query(text)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "33492471",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  },
  "vscode": {
   "interpreter": {
    "hash": "7377c2ccc78bc62c2683122d48c8cd1fb85a53850a1b1fc29736ed39852c9885"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}