File size: 3,813 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# StochasticAI\n",
    "\n",
    ">[Stochastic Acceleration Platform](https://docs.stochastic.ai/docs/introduction/) aims to simplify the life cycle of a Deep Learning model. From uploading and versioning the model, through training, compression and acceleration to putting it into production.\n",
    "\n",
    "This example goes over how to use LangChain to interact with `StochasticAI` models."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You have to get the API_KEY and the API_URL [here](https://app.stochastic.ai/workspace/profile/settings?tab=profile)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdin",
     "output_type": "stream",
     "text": [
      " 路路路路路路路路\n"
     ]
    }
   ],
   "source": [
    "from getpass import getpass\n",
    "\n",
    "STOCHASTICAI_API_KEY = getpass()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "import os\n",
    "\n",
    "os.environ[\"STOCHASTICAI_API_KEY\"] = STOCHASTICAI_API_KEY"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdin",
     "output_type": "stream",
     "text": [
      " 路路路路路路路路\n"
     ]
    }
   ],
   "source": [
    "YOUR_API_URL = getpass()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from langchain.llms import StochasticAI\n",
    "from langchain import PromptTemplate, LLMChain"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "template = \"\"\"Question: {question}\n",
    "\n",
    "Answer: Let's think step by step.\"\"\"\n",
    "\n",
    "prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "llm = StochasticAI(api_url=YOUR_API_URL)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "llm_chain = LLMChain(prompt=prompt, llm=llm)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"\\n\\nStep 1: In 1999, the St. Louis Rams won the Super Bowl.\\n\\nStep 2: In 1999, Beiber was born.\\n\\nStep 3: The Rams were in Los Angeles at the time.\\n\\nStep 4: So they didn't play in the Super Bowl that year.\\n\""
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
    "\n",
    "llm_chain.run(question)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.6"
  },
  "vscode": {
   "interpreter": {
    "hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}