Spaces:
Running
Running
File size: 5,802 Bytes
cfd3735 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
{
"cells": [
{
"cell_type": "markdown",
"id": "959300d4",
"metadata": {},
"source": [
"# PromptLayer OpenAI\n",
"\n",
"`PromptLayer` is the first platform that allows you to track, manage, and share your GPT prompt engineering. `PromptLayer` acts a middleware between your code and `OpenAI鈥檚` python library.\n",
"\n",
"`PromptLayer` records all your `OpenAI API` requests, allowing you to search and explore request history in the `PromptLayer` dashboard.\n",
"\n",
"\n",
"This example showcases how to connect to [PromptLayer](https://www.promptlayer.com) to start recording your OpenAI requests.\n",
"\n",
"Another example is [here](https://python.langchain.com/en/latest/ecosystem/promptlayer.html)."
]
},
{
"cell_type": "markdown",
"id": "6a45943e",
"metadata": {},
"source": [
"## Install PromptLayer\n",
"The `promptlayer` package is required to use PromptLayer with OpenAI. Install `promptlayer` using pip."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dbe09bd8",
"metadata": {
"tags": [],
"vscode": {
"languageId": "powershell"
}
},
"outputs": [],
"source": [
"!pip install promptlayer"
]
},
{
"cell_type": "markdown",
"id": "536c1dfa",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "c16da3b5",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import os\n",
"from langchain.llms import PromptLayerOpenAI\n",
"import promptlayer"
]
},
{
"cell_type": "markdown",
"id": "8564ce7d",
"metadata": {},
"source": [
"## Set the Environment API Key\n",
"You can create a PromptLayer API Key at [www.promptlayer.com](https://www.promptlayer.com) by clicking the settings cog in the navbar.\n",
"\n",
"Set it as an environment variable called `PROMPTLAYER_API_KEY`.\n",
"\n",
"You also need an OpenAI Key, called `OPENAI_API_KEY`."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "1df96674-a9fb-4126-bb87-541082782240",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
" 路路路路路路路路\n"
]
}
],
"source": [
"from getpass import getpass\n",
"\n",
"PROMPTLAYER_API_KEY = getpass()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "46ba25dc",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"os.environ[\"PROMPTLAYER_API_KEY\"] = PROMPTLAYER_API_KEY"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "9aa68c46-4d88-45ba-8a83-18fa41b4daed",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
" 路路路路路路路路\n"
]
}
],
"source": [
"from getpass import getpass\n",
"\n",
"OPENAI_API_KEY = getpass()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "6023b6fa-d9db-49d6-b713-0e19686119b0",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"os.environ[\"OPENAI_API_KEY\"] = OPENAI_API_KEY"
]
},
{
"cell_type": "markdown",
"id": "bf0294de",
"metadata": {},
"source": [
"## Use the PromptLayerOpenAI LLM like normal\n",
"*You can optionally pass in `pl_tags` to track your requests with PromptLayer's tagging feature.*"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3acf0069",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"llm = PromptLayerOpenAI(pl_tags=[\"langchain\"])\n",
"llm(\"I am a cat and I want\")"
]
},
{
"cell_type": "markdown",
"id": "a2d76826",
"metadata": {},
"source": [
"**The above request should now appear on your [PromptLayer dashboard](https://www.promptlayer.com).**"
]
},
{
"cell_type": "markdown",
"id": "05e9e2fe",
"metadata": {},
"source": [
"## Using PromptLayer Track\n",
"If you would like to use any of the [PromptLayer tracking features](https://magniv.notion.site/Track-4deee1b1f7a34c1680d085f82567dab9), you need to pass the argument `return_pl_id` when instantializing the PromptLayer LLM to get the request id. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1a7315b9",
"metadata": {},
"outputs": [],
"source": [
"llm = PromptLayerOpenAI(return_pl_id=True)\n",
"llm_results = llm.generate([\"Tell me a joke\"])\n",
"\n",
"for res in llm_results.generations:\n",
" pl_request_id = res[0].generation_info[\"pl_request_id\"]\n",
" promptlayer.track.score(request_id=pl_request_id, score=100)"
]
},
{
"cell_type": "markdown",
"id": "7eb19139",
"metadata": {},
"source": [
"Using this allows you to track the performance of your model in the PromptLayer dashboard. If you are using a prompt template, you can attach a template to a request as well.\n",
"Overall, this gives you the opportunity to track the performance of different templates and models in the PromptLayer dashboard."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"vscode": {
"interpreter": {
"hash": "8a5edab282632443219e051e4ade2d1d5bbc671c781051bf1437897cbdfea0f1"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|