File size: 7,049 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "959300d4",
   "metadata": {},
   "source": [
    "# Hugging Face Hub\n",
    "\n",
    "The [Hugging Face Hub](https://huggingface.co/docs/hub/index) is a platform with over 120k models, 20k datasets, and 50k demo apps (Spaces), all open source and publicly available, in an online platform where people can easily collaborate and build ML together.\n",
    "\n",
    "This example showcases how to connect to the Hugging Face Hub."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4c1b8450-5eaf-4d34-8341-2d785448a1ff",
   "metadata": {
    "tags": []
   },
   "source": [
    "To use, you should have the ``huggingface_hub`` python [package installed](https://huggingface.co/docs/huggingface_hub/installation)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d772b637-de00-4663-bd77-9bc96d798db2",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "!pip install huggingface_hub > /dev/null"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d597a792-354c-4ca5-b483-5965eec5d63d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# get a token: https://huggingface.co/docs/api-inference/quicktour#get-your-api-token\n",
    "\n",
    "from getpass import getpass\n",
    "\n",
    "HUGGINGFACEHUB_API_TOKEN = getpass()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b8c5b88c-e4b8-4d0d-9a35-6e8f106452c2",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "os.environ[\"HUGGINGFACEHUB_API_TOKEN\"] = HUGGINGFACEHUB_API_TOKEN"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "84dd44c1-c428-41f3-a911-520281386c94",
   "metadata": {},
   "source": [
    "**Select a Model**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "39c7eeac-01c4-486b-9480-e828a9e73e78",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from langchain import HuggingFaceHub\n",
    "\n",
    "repo_id = \"google/flan-t5-xl\" # See https://huggingface.co/models?pipeline_tag=text-generation&sort=downloads for some other options\n",
    "\n",
    "llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={\"temperature\":0, \"max_length\":64})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3acf0069",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain import PromptTemplate, LLMChain\n",
    "\n",
    "template = \"\"\"Question: {question}\n",
    "\n",
    "Answer: Let's think step by step.\"\"\"\n",
    "prompt = PromptTemplate(template=template, input_variables=[\"question\"])\n",
    "llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
    "\n",
    "question = \"Who won the FIFA World Cup in the year 1994? \"\n",
    "\n",
    "print(llm_chain.run(question))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ddaa06cf-95ec-48ce-b0ab-d892a7909693",
   "metadata": {},
   "source": [
    "## Examples\n",
    "\n",
    "Below are some examples of models you can access through the Hugging Face Hub integration."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4fa9337e-ccb5-4c52-9b7c-1653148bc256",
   "metadata": {},
   "source": [
    "### StableLM, by Stability AI\n",
    "\n",
    "See [Stability AI's](https://huggingface.co/stabilityai) organization page for a list of available models."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "36a1ce01-bd46-451f-8ee6-61c8f4bd665a",
   "metadata": {},
   "outputs": [],
   "source": [
    "repo_id = \"stabilityai/stablelm-tuned-alpha-3b\"\n",
    "# Others include stabilityai/stablelm-base-alpha-3b\n",
    "# as well as 7B parameter versions"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b5654cea-60b0-4f40-ab34-06ba1eca810d",
   "metadata": {},
   "outputs": [],
   "source": [
    "llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={\"temperature\":0, \"max_length\":64})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2f19d0dc-c987-433f-a8d6-b1214e8ee067",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Reuse the prompt and question from above.\n",
    "llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
    "print(llm_chain.run(question))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1a5c97af-89bc-4e59-95c1-223742a9160b",
   "metadata": {},
   "source": [
    "### Dolly, by DataBricks\n",
    "\n",
    "See [DataBricks](https://huggingface.co/databricks) organization page for a list of available models."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "521fcd2b-8e38-4920-b407-5c7d330411c9",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain import HuggingFaceHub\n",
    "\n",
    "repo_id = \"databricks/dolly-v2-3b\"\n",
    "\n",
    "llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={\"temperature\":0, \"max_length\":64})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9907ec3a-fe0c-4543-81c4-d42f9453f16c",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# Reuse the prompt and question from above.\n",
    "llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
    "print(llm_chain.run(question))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "03f6ae52-b5f9-4de6-832c-551cb3fa11ae",
   "metadata": {},
   "source": [
    "### Camel, by Writer\n",
    "\n",
    "See [Writer's](https://huggingface.co/Writer) organization page for a list of available models."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "257a091d-750b-4910-ac08-fe1c7b3fd98b",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from langchain import HuggingFaceHub\n",
    "\n",
    "repo_id = \"Writer/camel-5b-hf\" # See https://huggingface.co/Writer for other options\n",
    "llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={\"temperature\":0, \"max_length\":64})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b06f6838-a11a-4d6a-88e3-91fa1747a2b3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Reuse the prompt and question from above.\n",
    "llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
    "print(llm_chain.run(question))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2bf838eb-1083-402f-b099-b07c452418c8",
   "metadata": {},
   "source": [
    "**And many more!**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "18c78880-65d7-41d0-9722-18090efb60e9",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}