File size: 3,875 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# DeepInfra\n",
    "\n",
    "`DeepInfra` provides [several LLMs](https://deepinfra.com/models).\n",
    "\n",
    "This notebook goes over how to use Langchain with [DeepInfra](https://deepinfra.com)."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Imports"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "import os\n",
    "from langchain.llms import DeepInfra\n",
    "from langchain import PromptTemplate, LLMChain"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Set the Environment API Key\n",
    "Make sure to get your API key from DeepInfra. You have to [Login](https://deepinfra.com/login?from=%2Fdash) and get a new token.\n",
    "\n",
    "You are given a 1 hour free of serverless GPU compute to test different models. (see [here](https://github.com/deepinfra/deepctl#deepctl))\n",
    "You can print your token with `deepctl auth token`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdin",
     "output_type": "stream",
     "text": [
      " 路路路路路路路路\n"
     ]
    }
   ],
   "source": [
    "# get a new token: https://deepinfra.com/login?from=%2Fdash\n",
    "\n",
    "from getpass import getpass\n",
    "\n",
    "DEEPINFRA_API_TOKEN = getpass()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "os.environ[\"DEEPINFRA_API_TOKEN\"] = DEEPINFRA_API_TOKEN"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Create the DeepInfra instance\n",
    "Make sure to deploy your model first via `deepctl deploy create -m google/flat-t5-xl` (see [here](https://github.com/deepinfra/deepctl#deepctl))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "llm = DeepInfra(model_id=\"DEPLOYED MODEL ID\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Create a Prompt Template\n",
    "We will create a prompt template for Question and Answer."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "template = \"\"\"Question: {question}\n",
    "\n",
    "Answer: Let's think step by step.\"\"\"\n",
    "\n",
    "prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Initiate the LLMChain"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "llm_chain = LLMChain(prompt=prompt, llm=llm)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Run the LLMChain\n",
    "Provide a question and run the LLMChain."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "question = \"What NFL team won the Super Bowl in 2015?\"\n",
    "\n",
    "llm_chain.run(question)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.6"
  },
  "vscode": {
   "interpreter": {
    "hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}