File size: 4,248 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "9597802c",
   "metadata": {},
   "source": [
    "# Anyscale\n",
    "\n",
    "[Anyscale](https://www.anyscale.com/) is a fully-managed [Ray](https://www.ray.io/) platform, on which you can build, deploy, and manage scalable AI and Python applications\n",
    "\n",
    "This example goes over how to use LangChain to interact with `Anyscale` [service](https://docs.anyscale.com/productionize/services-v2/get-started)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5472a7cd-af26-48ca-ae9b-5f6ae73c74d2",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "import os\n",
    "\n",
    "os.environ[\"ANYSCALE_SERVICE_URL\"] = ANYSCALE_SERVICE_URL\n",
    "os.environ[\"ANYSCALE_SERVICE_ROUTE\"] = ANYSCALE_SERVICE_ROUTE\n",
    "os.environ[\"ANYSCALE_SERVICE_TOKEN\"] = ANYSCALE_SERVICE_TOKEN"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6fb585dd",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from langchain.llms import Anyscale\n",
    "from langchain import PromptTemplate, LLMChain"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "035dea0f",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "template = \"\"\"Question: {question}\n",
    "\n",
    "Answer: Let's think step by step.\"\"\"\n",
    "\n",
    "prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3f3458d9",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "llm = Anyscale()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a641dbd9",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "llm_chain = LLMChain(prompt=prompt, llm=llm)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9f844993",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "question = \"When was George Washington president?\"\n",
    "\n",
    "llm_chain.run(question)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "42f05b34-1a44-4cbd-8342-35c1572b6765",
   "metadata": {},
   "source": [
    "With Ray, we can distribute the queries without asyncrhonized implementation. This not only applies to Anyscale LLM model, but to any other Langchain LLM models which do not have `_acall` or `_agenerate` implemented"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "08b23adc-2b29-4c38-b538-47b3c3d840a6",
   "metadata": {},
   "outputs": [],
   "source": [
    "prompt_list = [\n",
    "    \"When was George Washington president?\",\n",
    "    \"Explain to me the difference between nuclear fission and fusion.\",\n",
    "    \"Give me a list of 5 science fiction books I should read next.\",\n",
    "    \"Explain the difference between Spark and Ray.\",\n",
    "    \"Suggest some fun holiday ideas.\",\n",
    "    \"Tell a joke.\",\n",
    "    \"What is 2+2?\",\n",
    "    \"Explain what is machine learning like I am five years old.\",\n",
    "    \"Explain what is artifical intelligence.\",\n",
    "]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2b45abb9-b764-497d-af99-0df1d4e335e0",
   "metadata": {},
   "outputs": [],
   "source": [
    "import ray\n",
    "\n",
    "@ray.remote\n",
    "def send_query(llm, prompt):\n",
    "    resp = llm(prompt)\n",
    "    return resp\n",
    "\n",
    "futures = [send_query.remote(llm, prompt) for prompt in prompt_list]\n",
    "results = ray.get(futures)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.8"
  },
  "vscode": {
   "interpreter": {
    "hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}