File size: 6,516 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "20ac6b98",
   "metadata": {},
   "source": [
    "# Getting Started\n",
    "\n",
    "This notebook goes over how to use the LLM class in LangChain.\n",
    "\n",
    "The LLM class is a class designed for interfacing with LLMs. There are lots of LLM providers (OpenAI, Cohere, Hugging Face, etc) - this class is designed to provide a standard interface for all of them. In this part of the documentation, we will focus on generic LLM functionality. For details on working with a specific LLM wrapper, please see the examples in the [How-To section](how_to_guides.rst).\n",
    "\n",
    "For this notebook, we will work with an OpenAI LLM wrapper, although the functionalities highlighted are generic for all LLM types."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "df924055",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from langchain.llms import OpenAI"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "182b484c",
   "metadata": {},
   "outputs": [],
   "source": [
    "llm = OpenAI(model_name=\"text-ada-001\", n=2, best_of=2)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9695ccfc",
   "metadata": {},
   "source": [
    "**Generate Text:** The most basic functionality an LLM has is just the ability to call it, passing in a string and getting back a string."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "9d12ac26",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'\\n\\nWhy did the chicken cross the road?\\n\\nTo get to the other side.'"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "llm(\"Tell me a joke\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e7d4d42d",
   "metadata": {},
   "source": [
    "**Generate:** More broadly, you can call it with a list of inputs, getting back a more complete response than just the text. This complete response includes things like multiple top responses, as well as LLM provider specific information"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "f4dc241a",
   "metadata": {},
   "outputs": [],
   "source": [
    "llm_result = llm.generate([\"Tell me a joke\", \"Tell me a poem\"]*15)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "740392f6",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "30"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(llm_result.generations)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "ab6cdcf1",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[Generation(text='\\n\\nWhy did the chicken cross the road?\\n\\nTo get to the other side!'),\n",
       " Generation(text='\\n\\nWhy did the chicken cross the road?\\n\\nTo get to the other side.')]"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "llm_result.generations[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "4946a778",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[Generation(text=\"\\n\\nWhat if love neverspeech\\n\\nWhat if love never ended\\n\\nWhat if love was only a feeling\\n\\nI'll never know this love\\n\\nIt's not a feeling\\n\\nBut it's what we have for each other\\n\\nWe just know that love is something strong\\n\\nAnd we can't help but be happy\\n\\nWe just feel what love is for us\\n\\nAnd we love each other with all our heart\\n\\nWe just don't know how\\n\\nHow it will go\\n\\nBut we know that love is something strong\\n\\nAnd we'll always have each other\\n\\nIn our lives.\"),\n",
       " Generation(text='\\n\\nOnce upon a time\\n\\nThere was a love so pure and true\\n\\nIt lasted for centuries\\n\\nAnd never became stale or dry\\n\\nIt was moving and alive\\n\\nAnd the heart of the love-ick\\n\\nIs still beating strong and true.')]"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "llm_result.generations[-1]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9efae834",
   "metadata": {},
   "source": [
    "You can also access provider specific information that is returned. This information is NOT standardized across providers."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "242e4527",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'token_usage': {'completion_tokens': 3903,\n",
       "  'total_tokens': 4023,\n",
       "  'prompt_tokens': 120}}"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "llm_result.llm_output"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bde8e04f",
   "metadata": {},
   "source": [
    "**Number of Tokens:** You can also estimate how many tokens a piece of text will be in that model. This is useful because models have a context length (and cost more for more tokens), which means you need to be aware of how long the text you are passing in is.\n",
    "\n",
    "Notice that by default the tokens are estimated using [tiktoken](https://github.com/openai/tiktoken) (except for legacy version <3.8, where a Hugging Face tokenizer is used)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "b623c774",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "3"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "llm.get_num_tokens(\"what a joke\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.9"
  },
  "vscode": {
   "interpreter": {
    "hash": "1235b9b19e8e9828b5c1fdb2cd89fe8d3de0fcde5ef5f3db36e4b671adb8660f"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}