Spaces:
Sleeping
Sleeping
File size: 6,516 Bytes
cfd3735 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
{
"cells": [
{
"cell_type": "markdown",
"id": "20ac6b98",
"metadata": {},
"source": [
"# Getting Started\n",
"\n",
"This notebook goes over how to use the LLM class in LangChain.\n",
"\n",
"The LLM class is a class designed for interfacing with LLMs. There are lots of LLM providers (OpenAI, Cohere, Hugging Face, etc) - this class is designed to provide a standard interface for all of them. In this part of the documentation, we will focus on generic LLM functionality. For details on working with a specific LLM wrapper, please see the examples in the [How-To section](how_to_guides.rst).\n",
"\n",
"For this notebook, we will work with an OpenAI LLM wrapper, although the functionalities highlighted are generic for all LLM types."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "df924055",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.llms import OpenAI"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "182b484c",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(model_name=\"text-ada-001\", n=2, best_of=2)"
]
},
{
"cell_type": "markdown",
"id": "9695ccfc",
"metadata": {},
"source": [
"**Generate Text:** The most basic functionality an LLM has is just the ability to call it, passing in a string and getting back a string."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "9d12ac26",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\n\\nWhy did the chicken cross the road?\\n\\nTo get to the other side.'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm(\"Tell me a joke\")"
]
},
{
"cell_type": "markdown",
"id": "e7d4d42d",
"metadata": {},
"source": [
"**Generate:** More broadly, you can call it with a list of inputs, getting back a more complete response than just the text. This complete response includes things like multiple top responses, as well as LLM provider specific information"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f4dc241a",
"metadata": {},
"outputs": [],
"source": [
"llm_result = llm.generate([\"Tell me a joke\", \"Tell me a poem\"]*15)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "740392f6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"30"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(llm_result.generations)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "ab6cdcf1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Generation(text='\\n\\nWhy did the chicken cross the road?\\n\\nTo get to the other side!'),\n",
" Generation(text='\\n\\nWhy did the chicken cross the road?\\n\\nTo get to the other side.')]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_result.generations[0]"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "4946a778",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Generation(text=\"\\n\\nWhat if love neverspeech\\n\\nWhat if love never ended\\n\\nWhat if love was only a feeling\\n\\nI'll never know this love\\n\\nIt's not a feeling\\n\\nBut it's what we have for each other\\n\\nWe just know that love is something strong\\n\\nAnd we can't help but be happy\\n\\nWe just feel what love is for us\\n\\nAnd we love each other with all our heart\\n\\nWe just don't know how\\n\\nHow it will go\\n\\nBut we know that love is something strong\\n\\nAnd we'll always have each other\\n\\nIn our lives.\"),\n",
" Generation(text='\\n\\nOnce upon a time\\n\\nThere was a love so pure and true\\n\\nIt lasted for centuries\\n\\nAnd never became stale or dry\\n\\nIt was moving and alive\\n\\nAnd the heart of the love-ick\\n\\nIs still beating strong and true.')]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_result.generations[-1]"
]
},
{
"cell_type": "markdown",
"id": "9efae834",
"metadata": {},
"source": [
"You can also access provider specific information that is returned. This information is NOT standardized across providers."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "242e4527",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'token_usage': {'completion_tokens': 3903,\n",
" 'total_tokens': 4023,\n",
" 'prompt_tokens': 120}}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_result.llm_output"
]
},
{
"cell_type": "markdown",
"id": "bde8e04f",
"metadata": {},
"source": [
"**Number of Tokens:** You can also estimate how many tokens a piece of text will be in that model. This is useful because models have a context length (and cost more for more tokens), which means you need to be aware of how long the text you are passing in is.\n",
"\n",
"Notice that by default the tokens are estimated using [tiktoken](https://github.com/openai/tiktoken) (except for legacy version <3.8, where a Hugging Face tokenizer is used)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "b623c774",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm.get_num_tokens(\"what a joke\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
},
"vscode": {
"interpreter": {
"hash": "1235b9b19e8e9828b5c1fdb2cd89fe8d3de0fcde5ef5f3db36e4b671adb8660f"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|