File size: 4,471 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "12f2b84c",
   "metadata": {},
   "source": [
    "# Getting Started\n",
    "\n",
    "One of the core value props of LangChain is that it provides a standard interface to models. This allows you to swap easily between models. At a high level, there are two main types of models: \n",
    "\n",
    "- Language Models: good for text generation\n",
    "- Text Embedding Models: good for turning text into a numerical representation\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a5d0965c",
   "metadata": {},
   "source": [
    "## Language Models\n",
    "\n",
    "There are two different sub-types of Language Models: \n",
    "    \n",
    "- LLMs: these wrap APIs which take text in and return text\n",
    "- ChatModels: these wrap models which take chat messages in and return a chat message\n",
    "\n",
    "This is a subtle difference, but a value prop of LangChain is that we provide a unified interface accross these. This is nice because although the underlying APIs are actually quite different, you often want to use them interchangeably.\n",
    "\n",
    "To see this, let's look at OpenAI (a wrapper around OpenAI's LLM) vs ChatOpenAI (a wrapper around OpenAI's ChatModel)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "3c932182",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.llms import OpenAI\n",
    "from langchain.chat_models import ChatOpenAI"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "b90db85d",
   "metadata": {},
   "outputs": [],
   "source": [
    "llm = OpenAI()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "61ef89e4",
   "metadata": {},
   "outputs": [],
   "source": [
    "chat_model = ChatOpenAI()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fa14db90",
   "metadata": {},
   "source": [
    "### `text` -> `text` interface"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "2d9f9f89",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'\\n\\nHi there!'"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "llm.predict(\"say hi!\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "4dbef65b",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'Hello there!'"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "chat_model.predict(\"say hi!\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b67ea8a1",
   "metadata": {},
   "source": [
    "### `messages` -> `message` interface"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "066dad10",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.schema import HumanMessage"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "67b95fa5",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "AIMessage(content='\\n\\nHello! Nice to meet you!', additional_kwargs={}, example=False)"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "llm.predict_messages([HumanMessage(content=\"say hi!\")])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "f5ce27db",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "AIMessage(content='Hello! How can I assist you today?', additional_kwargs={}, example=False)"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "chat_model.predict_messages([HumanMessage(content=\"say hi!\")])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3457a70e",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}