Spaces:
Running
Running
File size: 4,749 Bytes
cfd3735 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
{
"cells": [
{
"cell_type": "markdown",
"id": "bb0735c0",
"metadata": {},
"source": [
"# How to use few shot examples\n",
"\n",
"This notebook covers how to use few shot examples in chat models.\n",
"\n",
"There does not appear to be solid consensus on how best to do few shot prompting. As a result, we are not solidifying any abstractions around this yet but rather using existing abstractions."
]
},
{
"cell_type": "markdown",
"id": "c6e9664c",
"metadata": {},
"source": [
"## Alternating Human/AI messages\n",
"The first way of doing few shot prompting relies on using alternating human/ai messages. See an example of this below."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "62156fe4",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain import PromptTemplate, LLMChain\n",
"from langchain.prompts.chat import (\n",
" ChatPromptTemplate,\n",
" SystemMessagePromptTemplate,\n",
" AIMessagePromptTemplate,\n",
" HumanMessagePromptTemplate,\n",
")\n",
"from langchain.schema import (\n",
" AIMessage,\n",
" HumanMessage,\n",
" SystemMessage\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "ed7ac3c6",
"metadata": {},
"outputs": [],
"source": [
"chat = ChatOpenAI(temperature=0)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "98791aa9",
"metadata": {},
"outputs": [],
"source": [
"template=\"You are a helpful assistant that translates english to pirate.\"\n",
"system_message_prompt = SystemMessagePromptTemplate.from_template(template)\n",
"example_human = HumanMessagePromptTemplate.from_template(\"Hi\")\n",
"example_ai = AIMessagePromptTemplate.from_template(\"Argh me mateys\")\n",
"human_template=\"{text}\"\n",
"human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "4eebdcd7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"I be lovin' programmin', me hearty!\""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, example_human, example_ai, human_message_prompt])\n",
"chain = LLMChain(llm=chat, prompt=chat_prompt)\n",
"# get a chat completion from the formatted messages\n",
"chain.run(\"I love programming.\")"
]
},
{
"cell_type": "markdown",
"id": "5c4135d7",
"metadata": {},
"source": [
"## System Messages\n",
"\n",
"OpenAI provides an optional `name` parameter that they also recommend using in conjunction with system messages to do few shot prompting. Here is an example of how to do that below."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "1ba92d59",
"metadata": {},
"outputs": [],
"source": [
"template=\"You are a helpful assistant that translates english to pirate.\"\n",
"system_message_prompt = SystemMessagePromptTemplate.from_template(template)\n",
"example_human = SystemMessagePromptTemplate.from_template(\"Hi\", additional_kwargs={\"name\": \"example_user\"})\n",
"example_ai = SystemMessagePromptTemplate.from_template(\"Argh me mateys\", additional_kwargs={\"name\": \"example_assistant\"})\n",
"human_template=\"{text}\"\n",
"human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "56e488a7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"I be lovin' programmin', me hearty.\""
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, example_human, example_ai, human_message_prompt])\n",
"chain = LLMChain(llm=chat, prompt=chat_prompt)\n",
"# get a chat completion from the formatted messages\n",
"chain.run(\"I love programming.\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|