File size: 4,749 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "bb0735c0",
   "metadata": {},
   "source": [
    "# How to use few shot examples\n",
    "\n",
    "This notebook covers how to use few shot examples in chat models.\n",
    "\n",
    "There does not appear to be solid consensus on how best to do few shot prompting. As a result, we are not solidifying any abstractions around this yet but rather using existing abstractions."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c6e9664c",
   "metadata": {},
   "source": [
    "## Alternating Human/AI messages\n",
    "The first way of doing few shot prompting relies on using alternating human/ai messages. See an example of this below."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "62156fe4",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.chat_models import ChatOpenAI\n",
    "from langchain import PromptTemplate, LLMChain\n",
    "from langchain.prompts.chat import (\n",
    "    ChatPromptTemplate,\n",
    "    SystemMessagePromptTemplate,\n",
    "    AIMessagePromptTemplate,\n",
    "    HumanMessagePromptTemplate,\n",
    ")\n",
    "from langchain.schema import (\n",
    "    AIMessage,\n",
    "    HumanMessage,\n",
    "    SystemMessage\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "ed7ac3c6",
   "metadata": {},
   "outputs": [],
   "source": [
    "chat = ChatOpenAI(temperature=0)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "98791aa9",
   "metadata": {},
   "outputs": [],
   "source": [
    "template=\"You are a helpful assistant that translates english to pirate.\"\n",
    "system_message_prompt = SystemMessagePromptTemplate.from_template(template)\n",
    "example_human = HumanMessagePromptTemplate.from_template(\"Hi\")\n",
    "example_ai = AIMessagePromptTemplate.from_template(\"Argh me mateys\")\n",
    "human_template=\"{text}\"\n",
    "human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "4eebdcd7",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"I be lovin' programmin', me hearty!\""
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, example_human, example_ai, human_message_prompt])\n",
    "chain = LLMChain(llm=chat, prompt=chat_prompt)\n",
    "# get a chat completion from the formatted messages\n",
    "chain.run(\"I love programming.\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5c4135d7",
   "metadata": {},
   "source": [
    "## System Messages\n",
    "\n",
    "OpenAI provides an optional `name` parameter that they also recommend using in conjunction with system messages to do few shot prompting. Here is an example of how to do that below."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "1ba92d59",
   "metadata": {},
   "outputs": [],
   "source": [
    "template=\"You are a helpful assistant that translates english to pirate.\"\n",
    "system_message_prompt = SystemMessagePromptTemplate.from_template(template)\n",
    "example_human = SystemMessagePromptTemplate.from_template(\"Hi\", additional_kwargs={\"name\": \"example_user\"})\n",
    "example_ai = SystemMessagePromptTemplate.from_template(\"Argh me mateys\", additional_kwargs={\"name\": \"example_assistant\"})\n",
    "human_template=\"{text}\"\n",
    "human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "56e488a7",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"I be lovin' programmin', me hearty.\""
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, example_human, example_ai, human_message_prompt])\n",
    "chain = LLMChain(llm=chat, prompt=chat_prompt)\n",
    "# get a chat completion from the formatted messages\n",
    "chain.run(\"I love programming.\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}