File size: 7,833 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "7ef4d402-6662-4a26-b612-35b542066487",
   "metadata": {
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "#  Getting Started\n",
    "\n",
    "This notebook showcases basic functionality related to VectorStores. A key part of working with vectorstores is creating the vector to put in them, which is usually created via embeddings. Therefore, it is recommended that you familiarize yourself with the [embedding notebook](../../models/text_embedding.htpl) before diving into this.\n",
    "\n",
    "This covers generic high level functionality related to all vector stores."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "965eecee",
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "from langchain.embeddings.openai import OpenAIEmbeddings\n",
    "from langchain.text_splitter import CharacterTextSplitter\n",
    "from langchain.vectorstores import Chroma"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "68481687",
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "with open('../../state_of_the_union.txt') as f:\n",
    "    state_of_the_union = f.read()\n",
    "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
    "texts = text_splitter.split_text(state_of_the_union)\n",
    "\n",
    "embeddings = OpenAIEmbeddings()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "015f4ff5",
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running Chroma using direct local API.\n",
      "Using DuckDB in-memory for database. Data will be transient.\n"
     ]
    }
   ],
   "source": [
    "docsearch = Chroma.from_texts(texts, embeddings)\n",
    "\n",
    "query = \"What did the president say about Ketanji Brown Jackson\"\n",
    "docs = docsearch.similarity_search(query)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "67baf32e",
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "In state after state, new laws have been passed, not only to suppress the vote, but to subvert entire elections. \n",
      "\n",
      "We cannot let this happen. \n",
      "\n",
      "Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
      "\n",
      "Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
      "\n",
      "One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
      "\n",
      "And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.\n"
     ]
    }
   ],
   "source": [
    "print(docs[0].page_content)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fb6baaf8",
   "metadata": {},
   "source": [
    "## Add texts\n",
    "You can easily add text to a vectorstore with the `add_texts` method. It will return a list of document IDs (in case you need to use them downstream)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "70758e4f",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['a05e3d0c-ab40-11ed-a853-e65801318981']"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "docsearch.add_texts([\"Ankush went to Princeton\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "4edeb88f",
   "metadata": {},
   "outputs": [],
   "source": [
    "query = \"Where did Ankush go to college?\"\n",
    "docs = docsearch.similarity_search(query)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "1cba64a2",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Document(page_content='Ankush went to Princeton', lookup_str='', metadata={}, lookup_index=0)"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "docs[0]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bbf5ec44",
   "metadata": {},
   "source": [
    "## From Documents\n",
    "We can also initialize a vectorstore from documents directly. This is useful when we use the method on the text splitter to get documents directly (handy when the original documents have associated metadata)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "df4a459c",
   "metadata": {},
   "outputs": [],
   "source": [
    "documents = text_splitter.create_documents([state_of_the_union], metadatas=[{\"source\": \"State of the Union\"}])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "4b480245",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running Chroma using direct local API.\n",
      "Using DuckDB in-memory for database. Data will be transient.\n"
     ]
    }
   ],
   "source": [
    "docsearch = Chroma.from_documents(documents, embeddings)\n",
    "\n",
    "query = \"What did the president say about Ketanji Brown Jackson\"\n",
    "docs = docsearch.similarity_search(query)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "86aa4cda",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "In state after state, new laws have been passed, not only to suppress the vote, but to subvert entire elections. \n",
      "\n",
      "We cannot let this happen. \n",
      "\n",
      "Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
      "\n",
      "Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
      "\n",
      "One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
      "\n",
      "And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.\n"
     ]
    }
   ],
   "source": [
    "print(docs[0].page_content)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4af5a071",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}