File size: 7,459 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Redis\n",
    "\n",
    ">[Redis (Remote Dictionary Server)](https://en.wikipedia.org/wiki/Redis) is an in-memory data structure store, used as a distributed, in-memory key–value database, cache and message broker, with optional durability.\n",
    "\n",
    "This notebook shows how to use functionality related to the [Redis vector database](https://redis.com/solutions/use-cases/vector-database/)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "!pip install redis"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We want to use `OpenAIEmbeddings` so we have to get the OpenAI API Key."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import getpass\n",
    "\n",
    "os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from langchain.embeddings import OpenAIEmbeddings\n",
    "from langchain.text_splitter import CharacterTextSplitter\n",
    "from langchain.vectorstores.redis import Redis"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.document_loaders import TextLoader\n",
    "\n",
    "loader = TextLoader('../../../state_of_the_union.txt')\n",
    "documents = loader.load()\n",
    "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
    "docs = text_splitter.split_documents(documents)\n",
    "\n",
    "embeddings = OpenAIEmbeddings()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "rds = Redis.from_documents(docs, embeddings, redis_url=\"redis://localhost:6379\",  index_name='link')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'link'"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "rds.index_name"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
      "\n",
      "Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
      "\n",
      "One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
      "\n",
      "And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.\n"
     ]
    }
   ],
   "source": [
    "query = \"What did the president say about Ketanji Brown Jackson\"\n",
    "results = rds.similarity_search(query)\n",
    "print(results[0].page_content)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['doc:link:d7d02e3faf1b40bbbe29a683ff75b280']\n"
     ]
    }
   ],
   "source": [
    "print(rds.add_texts([\"Ankush went to Princeton\"]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Ankush went to Princeton\n"
     ]
    }
   ],
   "source": [
    "query = \"Princeton\"\n",
    "results = rds.similarity_search(query)\n",
    "print(results[0].page_content)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
      "\n",
      "Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
      "\n",
      "One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
      "\n",
      "And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.\n"
     ]
    }
   ],
   "source": [
    "# Load from existing index\n",
    "rds = Redis.from_existing_index(embeddings, redis_url=\"redis://localhost:6379\", index_name='link')\n",
    "\n",
    "query = \"What did the president say about Ketanji Brown Jackson\"\n",
    "results = rds.similarity_search(query)\n",
    "print(results[0].page_content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## RedisVectorStoreRetriever\n",
    "\n",
    "Here we go over different options for using the vector store as a retriever.\n",
    "\n",
    "There are three different search methods we can use to do retrieval. By default, it will use semantic similarity."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "retriever = rds.as_retriever()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "docs = retriever.get_relevant_documents(query)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can also use similarity_limit as a search method. This is only return documents if they are similar enough"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "retriever = rds.as_retriever(search_type=\"similarity_limit\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Here we can see it doesn't return any results because there are no relevant documents\n",
    "retriever.get_relevant_documents(\"where did ankush go to college?\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}