File size: 21,377 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "683953b3",
   "metadata": {},
   "source": [
    "# Qdrant\n",
    "\n",
    ">[Qdrant](https://qdrant.tech/documentation/) (read: quadrant ) is a vector similarity search engine. It provides a production-ready service with a convenient API to store, search, and manage points - vectors with an additional payload. `Qdrant` is tailored to extended filtering support. It makes it useful for all sorts of neural network or semantic-based matching, faceted search, and other applications.\n",
    "\n",
    "\n",
    "This notebook shows how to use functionality related to the `Qdrant` vector database. \n",
    "\n",
    "There are various modes of how to run `Qdrant`, and depending on the chosen one, there will be some subtle differences. The options include:\n",
    "- Local mode, no server required\n",
    "- On-premise server deployment\n",
    "- Qdrant Cloud\n",
    "\n",
    "See the [installation instructions](https://qdrant.tech/documentation/install/)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e03e8460-8f32-4d1f-bb93-4f7636a476fa",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "!pip install qdrant-client"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7b2f111b-357a-4f42-9730-ef0603bdc1b5",
   "metadata": {},
   "source": [
    "We want to use `OpenAIEmbeddings` so we have to get the OpenAI API Key."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "082e7e8b-ac52-430c-98d6-8f0924457642",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdin",
     "output_type": "stream",
     "text": [
      "OpenAI API Key: 路路路路路路路路\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import getpass\n",
    "\n",
    "os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "aac9563e",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-04-04T10:51:22.282884Z",
     "start_time": "2023-04-04T10:51:21.408077Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "from langchain.embeddings.openai import OpenAIEmbeddings\n",
    "from langchain.text_splitter import CharacterTextSplitter\n",
    "from langchain.vectorstores import Qdrant\n",
    "from langchain.document_loaders import TextLoader"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "a3c3999a",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-04-04T10:51:22.520144Z",
     "start_time": "2023-04-04T10:51:22.285826Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "loader = TextLoader('../../../state_of_the_union.txt')\n",
    "documents = loader.load()\n",
    "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
    "docs = text_splitter.split_documents(documents)\n",
    "\n",
    "embeddings = OpenAIEmbeddings()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "eeead681",
   "metadata": {},
   "source": [
    "## Connecting to Qdrant from LangChain\n",
    "\n",
    "### Local mode\n",
    "\n",
    "Python client allows you to run the same code in local mode without running the Qdrant server. That's great for testing things out and debugging or if you plan to store just a small amount of vectors. The embeddings might be fully kepy in memory or persisted on disk.\n",
    "\n",
    "#### In-memory\n",
    "\n",
    "For some testing scenarios and quick experiments, you may prefer to keep all the data in memory only, so it gets lost when the client is destroyed - usually at the end of your script/notebook."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "8429667e",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-04-04T10:51:22.525091Z",
     "start_time": "2023-04-04T10:51:22.522015Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "qdrant = Qdrant.from_documents(\n",
    "    docs, embeddings, \n",
    "    location=\":memory:\",  # Local mode with in-memory storage only\n",
    "    collection_name=\"my_documents\",\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "59f0b954",
   "metadata": {},
   "source": [
    "#### On-disk storage\n",
    "\n",
    "Local mode, without using the Qdrant server, may also store your vectors on disk so they're persisted between runs."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "24b370e2",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-04-04T10:51:24.827567Z",
     "start_time": "2023-04-04T10:51:22.529080Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "qdrant = Qdrant.from_documents(\n",
    "    docs, embeddings, \n",
    "    path=\"/tmp/local_qdrant\",\n",
    "    collection_name=\"my_documents\",\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "749658ce",
   "metadata": {},
   "source": [
    "### On-premise server deployment\n",
    "\n",
    "No matter if you choose to launch Qdrant locally with [a Docker container](https://qdrant.tech/documentation/install/), or select a Kubernetes deployment with [the official Helm chart](https://github.com/qdrant/qdrant-helm), the way you're going to connect to such an instance will be identical. You'll need to provide a URL pointing to the service."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "91e7f5ce",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-04-04T10:51:24.832708Z",
     "start_time": "2023-04-04T10:51:24.829905Z"
    }
   },
   "outputs": [],
   "source": [
    "url = \"<---qdrant url here --->\"\n",
    "qdrant = Qdrant.from_documents(\n",
    "    docs, embeddings, \n",
    "    url, prefer_grpc=True, \n",
    "    collection_name=\"my_documents\",\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c9e21ce9",
   "metadata": {},
   "source": [
    "### Qdrant Cloud\n",
    "\n",
    "If you prefer not to keep yourself busy with managing the infrastructure, you can choose to set up a fully-managed Qdrant cluster on [Qdrant Cloud](https://cloud.qdrant.io/). There is a free forever 1GB cluster included for trying out. The main difference with using a managed version of Qdrant is that you'll need to provide an API key to secure your deployment from being accessed publicly."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "dcf88bdf",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-04-04T10:51:24.837599Z",
     "start_time": "2023-04-04T10:51:24.834690Z"
    }
   },
   "outputs": [],
   "source": [
    "url = \"<---qdrant cloud cluster url here --->\"\n",
    "api_key = \"<---api key here--->\"\n",
    "qdrant = Qdrant.from_documents(\n",
    "    docs, embeddings, \n",
    "    url, prefer_grpc=True, api_key=api_key, \n",
    "    collection_name=\"my_documents\",\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "93540013",
   "metadata": {},
   "source": [
    "## Reusing the same collection\n",
    "\n",
    "Both `Qdrant.from_texts` and `Qdrant.from_documents` methods are great to start using Qdrant with LangChain, but **they are going to destroy the collection and create it from scratch**! If you want to reuse the existing collection, you can always create an instance of `Qdrant` on your own and pass the `QdrantClient` instance with the connection details."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "b7b432d7",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-04-04T10:51:24.843090Z",
     "start_time": "2023-04-04T10:51:24.840041Z"
    }
   },
   "outputs": [],
   "source": [
    "del qdrant"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "30a87570",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-04-04T10:51:24.854117Z",
     "start_time": "2023-04-04T10:51:24.845385Z"
    }
   },
   "outputs": [],
   "source": [
    "import qdrant_client\n",
    "\n",
    "client = qdrant_client.QdrantClient(\n",
    "    path=\"/tmp/local_qdrant\", prefer_grpc=True\n",
    ")\n",
    "qdrant = Qdrant(\n",
    "    client=client, collection_name=\"my_documents\", \n",
    "    embedding_function=embeddings.embed_query\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1f9215c8",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-04-04T09:27:29.920258Z",
     "start_time": "2023-04-04T09:27:29.913714Z"
    }
   },
   "source": [
    "## Similarity search\n",
    "\n",
    "The simplest scenario for using Qdrant vector store is to perform a similarity search. Under the hood, our query will be encoded with the `embedding_function` and used to find similar documents in Qdrant collection."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "a8c513ab",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-04-04T10:51:25.204469Z",
     "start_time": "2023-04-04T10:51:24.855618Z"
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "query = \"What did the president say about Ketanji Brown Jackson\"\n",
    "found_docs = qdrant.similarity_search(query)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "fc516993",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-04-04T10:51:25.220984Z",
     "start_time": "2023-04-04T10:51:25.213943Z"
    },
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you鈥檙e at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
      "\n",
      "Tonight, I鈥檇 like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer鈥攁n Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
      "\n",
      "One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
      "\n",
      "And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation鈥檚 top legal minds, who will continue Justice Breyer鈥檚 legacy of excellence.\n"
     ]
    }
   ],
   "source": [
    "print(found_docs[0].page_content)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1bda9bf5",
   "metadata": {},
   "source": [
    "## Similarity search with score\n",
    "\n",
    "Sometimes we might want to perform the search, but also obtain a relevancy score to know how good is a particular result."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "8804a21d",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-04-04T10:51:25.631585Z",
     "start_time": "2023-04-04T10:51:25.227384Z"
    }
   },
   "outputs": [],
   "source": [
    "query = \"What did the president say about Ketanji Brown Jackson\"\n",
    "found_docs = qdrant.similarity_search_with_score(query)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "756a6887",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-04-04T10:51:25.642282Z",
     "start_time": "2023-04-04T10:51:25.635947Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you鈥檙e at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
      "\n",
      "Tonight, I鈥檇 like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer鈥攁n Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
      "\n",
      "One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
      "\n",
      "And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation鈥檚 top legal minds, who will continue Justice Breyer鈥檚 legacy of excellence.\n",
      "\n",
      "Score: 0.8153784913324512\n"
     ]
    }
   ],
   "source": [
    "document, score = found_docs[0]\n",
    "print(document.page_content)\n",
    "print(f\"\\nScore: {score}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c58c30bf",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-04-04T10:39:53.032744Z",
     "start_time": "2023-04-04T10:39:53.028673Z"
    }
   },
   "source": [
    "## Maximum marginal relevance search (MMR)\n",
    "\n",
    "If you'd like to look up for some similar documents, but you'd also like to receive diverse results, MMR is method you should consider. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "76810fb6",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-04-04T10:51:26.010947Z",
     "start_time": "2023-04-04T10:51:25.647687Z"
    }
   },
   "outputs": [],
   "source": [
    "query = \"What did the president say about Ketanji Brown Jackson\"\n",
    "found_docs = qdrant.max_marginal_relevance_search(query, k=2, fetch_k=10)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "80c6db11",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-04-04T10:51:26.016979Z",
     "start_time": "2023-04-04T10:51:26.013329Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1. Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you鈥檙e at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
      "\n",
      "Tonight, I鈥檇 like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer鈥攁n Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
      "\n",
      "One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
      "\n",
      "And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation鈥檚 top legal minds, who will continue Justice Breyer鈥檚 legacy of excellence. \n",
      "\n",
      "2. We can鈥檛 change how divided we鈥檝e been. But we can change how we move forward鈥攐n COVID-19 and other issues we must face together. \n",
      "\n",
      "I recently visited the New York City Police Department days after the funerals of Officer Wilbert Mora and his partner, Officer Jason Rivera. \n",
      "\n",
      "They were responding to a 9-1-1 call when a man shot and killed them with a stolen gun. \n",
      "\n",
      "Officer Mora was 27 years old. \n",
      "\n",
      "Officer Rivera was 22. \n",
      "\n",
      "Both Dominican Americans who鈥檇 grown up on the same streets they later chose to patrol as police officers. \n",
      "\n",
      "I spoke with their families and told them that we are forever in debt for their sacrifice, and we will carry on their mission to restore the trust and safety every community deserves. \n",
      "\n",
      "I鈥檝e worked on these issues a long time. \n",
      "\n",
      "I know what works: Investing in crime preventionand community police officers who鈥檒l walk the beat, who鈥檒l know the neighborhood, and who can restore trust and safety. \n",
      "\n"
     ]
    }
   ],
   "source": [
    "for i, doc in enumerate(found_docs):\n",
    "    print(f\"{i + 1}.\", doc.page_content, \"\\n\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "691a82d6",
   "metadata": {},
   "source": [
    "## Qdrant as a Retriever\n",
    "\n",
    "Qdrant, as all the other vector stores, is a LangChain Retriever, by using cosine similarity. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "9427195f",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-04-04T10:51:26.031451Z",
     "start_time": "2023-04-04T10:51:26.018763Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "VectorStoreRetriever(vectorstore=<langchain.vectorstores.qdrant.Qdrant object at 0x7fc4e5720a00>, search_type='similarity', search_kwargs={})"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "retriever = qdrant.as_retriever()\n",
    "retriever"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0c851b4f",
   "metadata": {},
   "source": [
    "It might be also specified to use MMR as a search strategy, instead of similarity."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "64348f1b",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-04-04T10:51:26.043909Z",
     "start_time": "2023-04-04T10:51:26.034284Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "VectorStoreRetriever(vectorstore=<langchain.vectorstores.qdrant.Qdrant object at 0x7fc4e5720a00>, search_type='mmr', search_kwargs={})"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "retriever = qdrant.as_retriever(search_type=\"mmr\")\n",
    "retriever"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "f3c70c31",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-04-04T10:51:26.495652Z",
     "start_time": "2023-04-04T10:51:26.046407Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you鈥檙e at it, pass the Disclose Act so Americans can know who is funding our elections. \\n\\nTonight, I鈥檇 like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer鈥攁n Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \\n\\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \\n\\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation鈥檚 top legal minds, who will continue Justice Breyer鈥檚 legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt'})"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "query = \"What did the president say about Ketanji Brown Jackson\"\n",
    "retriever.get_relevant_documents(query)[0]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0358ecde",
   "metadata": {},
   "source": [
    "## Customizing Qdrant\n",
    "\n",
    "Qdrant stores your vector embeddings along with the optional JSON-like payload. Payloads are optional, but since LangChain assumes the embeddings are generated from the documents, we keep the context data, so you can extract the original texts as well.\n",
    "\n",
    "By default, your document is going to be stored in the following payload structure:\n",
    "\n",
    "```json\n",
    "{\n",
    "    \"page_content\": \"Lorem ipsum dolor sit amet\",\n",
    "    \"metadata\": {\n",
    "        \"foo\": \"bar\"\n",
    "    }\n",
    "}\n",
    "```\n",
    "\n",
    "You can, however, decide to use different keys for the page content and metadata. That's useful if you already have a collection that you'd like to reuse. You can always change the "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "e4d6baf9",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2023-04-04T11:08:31.739141Z",
     "start_time": "2023-04-04T11:08:30.229748Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<langchain.vectorstores.qdrant.Qdrant at 0x7fc4e2baa230>"
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "Qdrant.from_documents(\n",
    "    docs, embeddings, \n",
    "    location=\":memory:\",\n",
    "    collection_name=\"my_documents_2\",\n",
    "    content_payload_key=\"my_page_content_key\",\n",
    "    metadata_payload_key=\"my_meta\",\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2300e785",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}