Spaces:
Sleeping
Sleeping
File size: 21,377 Bytes
cfd3735 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 |
{
"cells": [
{
"cell_type": "markdown",
"id": "683953b3",
"metadata": {},
"source": [
"# Qdrant\n",
"\n",
">[Qdrant](https://qdrant.tech/documentation/) (read: quadrant ) is a vector similarity search engine. It provides a production-ready service with a convenient API to store, search, and manage points - vectors with an additional payload. `Qdrant` is tailored to extended filtering support. It makes it useful for all sorts of neural network or semantic-based matching, faceted search, and other applications.\n",
"\n",
"\n",
"This notebook shows how to use functionality related to the `Qdrant` vector database. \n",
"\n",
"There are various modes of how to run `Qdrant`, and depending on the chosen one, there will be some subtle differences. The options include:\n",
"- Local mode, no server required\n",
"- On-premise server deployment\n",
"- Qdrant Cloud\n",
"\n",
"See the [installation instructions](https://qdrant.tech/documentation/install/)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e03e8460-8f32-4d1f-bb93-4f7636a476fa",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!pip install qdrant-client"
]
},
{
"cell_type": "markdown",
"id": "7b2f111b-357a-4f42-9730-ef0603bdc1b5",
"metadata": {},
"source": [
"We want to use `OpenAIEmbeddings` so we have to get the OpenAI API Key."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "082e7e8b-ac52-430c-98d6-8f0924457642",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
"OpenAI API Key: 路路路路路路路路\n"
]
}
],
"source": [
"import os\n",
"import getpass\n",
"\n",
"os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "aac9563e",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:22.282884Z",
"start_time": "2023-04-04T10:51:21.408077Z"
},
"tags": []
},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores import Qdrant\n",
"from langchain.document_loaders import TextLoader"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "a3c3999a",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:22.520144Z",
"start_time": "2023-04-04T10:51:22.285826Z"
},
"tags": []
},
"outputs": [],
"source": [
"loader = TextLoader('../../../state_of_the_union.txt')\n",
"documents = loader.load()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"docs = text_splitter.split_documents(documents)\n",
"\n",
"embeddings = OpenAIEmbeddings()"
]
},
{
"cell_type": "markdown",
"id": "eeead681",
"metadata": {},
"source": [
"## Connecting to Qdrant from LangChain\n",
"\n",
"### Local mode\n",
"\n",
"Python client allows you to run the same code in local mode without running the Qdrant server. That's great for testing things out and debugging or if you plan to store just a small amount of vectors. The embeddings might be fully kepy in memory or persisted on disk.\n",
"\n",
"#### In-memory\n",
"\n",
"For some testing scenarios and quick experiments, you may prefer to keep all the data in memory only, so it gets lost when the client is destroyed - usually at the end of your script/notebook."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "8429667e",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:22.525091Z",
"start_time": "2023-04-04T10:51:22.522015Z"
},
"tags": []
},
"outputs": [],
"source": [
"qdrant = Qdrant.from_documents(\n",
" docs, embeddings, \n",
" location=\":memory:\", # Local mode with in-memory storage only\n",
" collection_name=\"my_documents\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "59f0b954",
"metadata": {},
"source": [
"#### On-disk storage\n",
"\n",
"Local mode, without using the Qdrant server, may also store your vectors on disk so they're persisted between runs."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "24b370e2",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:24.827567Z",
"start_time": "2023-04-04T10:51:22.529080Z"
},
"tags": []
},
"outputs": [],
"source": [
"qdrant = Qdrant.from_documents(\n",
" docs, embeddings, \n",
" path=\"/tmp/local_qdrant\",\n",
" collection_name=\"my_documents\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "749658ce",
"metadata": {},
"source": [
"### On-premise server deployment\n",
"\n",
"No matter if you choose to launch Qdrant locally with [a Docker container](https://qdrant.tech/documentation/install/), or select a Kubernetes deployment with [the official Helm chart](https://github.com/qdrant/qdrant-helm), the way you're going to connect to such an instance will be identical. You'll need to provide a URL pointing to the service."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "91e7f5ce",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:24.832708Z",
"start_time": "2023-04-04T10:51:24.829905Z"
}
},
"outputs": [],
"source": [
"url = \"<---qdrant url here --->\"\n",
"qdrant = Qdrant.from_documents(\n",
" docs, embeddings, \n",
" url, prefer_grpc=True, \n",
" collection_name=\"my_documents\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "c9e21ce9",
"metadata": {},
"source": [
"### Qdrant Cloud\n",
"\n",
"If you prefer not to keep yourself busy with managing the infrastructure, you can choose to set up a fully-managed Qdrant cluster on [Qdrant Cloud](https://cloud.qdrant.io/). There is a free forever 1GB cluster included for trying out. The main difference with using a managed version of Qdrant is that you'll need to provide an API key to secure your deployment from being accessed publicly."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "dcf88bdf",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:24.837599Z",
"start_time": "2023-04-04T10:51:24.834690Z"
}
},
"outputs": [],
"source": [
"url = \"<---qdrant cloud cluster url here --->\"\n",
"api_key = \"<---api key here--->\"\n",
"qdrant = Qdrant.from_documents(\n",
" docs, embeddings, \n",
" url, prefer_grpc=True, api_key=api_key, \n",
" collection_name=\"my_documents\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "93540013",
"metadata": {},
"source": [
"## Reusing the same collection\n",
"\n",
"Both `Qdrant.from_texts` and `Qdrant.from_documents` methods are great to start using Qdrant with LangChain, but **they are going to destroy the collection and create it from scratch**! If you want to reuse the existing collection, you can always create an instance of `Qdrant` on your own and pass the `QdrantClient` instance with the connection details."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "b7b432d7",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:24.843090Z",
"start_time": "2023-04-04T10:51:24.840041Z"
}
},
"outputs": [],
"source": [
"del qdrant"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "30a87570",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:24.854117Z",
"start_time": "2023-04-04T10:51:24.845385Z"
}
},
"outputs": [],
"source": [
"import qdrant_client\n",
"\n",
"client = qdrant_client.QdrantClient(\n",
" path=\"/tmp/local_qdrant\", prefer_grpc=True\n",
")\n",
"qdrant = Qdrant(\n",
" client=client, collection_name=\"my_documents\", \n",
" embedding_function=embeddings.embed_query\n",
")"
]
},
{
"cell_type": "markdown",
"id": "1f9215c8",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T09:27:29.920258Z",
"start_time": "2023-04-04T09:27:29.913714Z"
}
},
"source": [
"## Similarity search\n",
"\n",
"The simplest scenario for using Qdrant vector store is to perform a similarity search. Under the hood, our query will be encoded with the `embedding_function` and used to find similar documents in Qdrant collection."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "a8c513ab",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:25.204469Z",
"start_time": "2023-04-04T10:51:24.855618Z"
},
"tags": []
},
"outputs": [],
"source": [
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"found_docs = qdrant.similarity_search(query)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "fc516993",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:25.220984Z",
"start_time": "2023-04-04T10:51:25.213943Z"
},
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you鈥檙e at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
"\n",
"Tonight, I鈥檇 like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer鈥攁n Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation鈥檚 top legal minds, who will continue Justice Breyer鈥檚 legacy of excellence.\n"
]
}
],
"source": [
"print(found_docs[0].page_content)"
]
},
{
"cell_type": "markdown",
"id": "1bda9bf5",
"metadata": {},
"source": [
"## Similarity search with score\n",
"\n",
"Sometimes we might want to perform the search, but also obtain a relevancy score to know how good is a particular result."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "8804a21d",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:25.631585Z",
"start_time": "2023-04-04T10:51:25.227384Z"
}
},
"outputs": [],
"source": [
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"found_docs = qdrant.similarity_search_with_score(query)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "756a6887",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:25.642282Z",
"start_time": "2023-04-04T10:51:25.635947Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you鈥檙e at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
"\n",
"Tonight, I鈥檇 like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer鈥攁n Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation鈥檚 top legal minds, who will continue Justice Breyer鈥檚 legacy of excellence.\n",
"\n",
"Score: 0.8153784913324512\n"
]
}
],
"source": [
"document, score = found_docs[0]\n",
"print(document.page_content)\n",
"print(f\"\\nScore: {score}\")"
]
},
{
"cell_type": "markdown",
"id": "c58c30bf",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:39:53.032744Z",
"start_time": "2023-04-04T10:39:53.028673Z"
}
},
"source": [
"## Maximum marginal relevance search (MMR)\n",
"\n",
"If you'd like to look up for some similar documents, but you'd also like to receive diverse results, MMR is method you should consider. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "76810fb6",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:26.010947Z",
"start_time": "2023-04-04T10:51:25.647687Z"
}
},
"outputs": [],
"source": [
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"found_docs = qdrant.max_marginal_relevance_search(query, k=2, fetch_k=10)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "80c6db11",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:26.016979Z",
"start_time": "2023-04-04T10:51:26.013329Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1. Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you鈥檙e at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
"\n",
"Tonight, I鈥檇 like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer鈥攁n Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation鈥檚 top legal minds, who will continue Justice Breyer鈥檚 legacy of excellence. \n",
"\n",
"2. We can鈥檛 change how divided we鈥檝e been. But we can change how we move forward鈥攐n COVID-19 and other issues we must face together. \n",
"\n",
"I recently visited the New York City Police Department days after the funerals of Officer Wilbert Mora and his partner, Officer Jason Rivera. \n",
"\n",
"They were responding to a 9-1-1 call when a man shot and killed them with a stolen gun. \n",
"\n",
"Officer Mora was 27 years old. \n",
"\n",
"Officer Rivera was 22. \n",
"\n",
"Both Dominican Americans who鈥檇 grown up on the same streets they later chose to patrol as police officers. \n",
"\n",
"I spoke with their families and told them that we are forever in debt for their sacrifice, and we will carry on their mission to restore the trust and safety every community deserves. \n",
"\n",
"I鈥檝e worked on these issues a long time. \n",
"\n",
"I know what works: Investing in crime preventionand community police officers who鈥檒l walk the beat, who鈥檒l know the neighborhood, and who can restore trust and safety. \n",
"\n"
]
}
],
"source": [
"for i, doc in enumerate(found_docs):\n",
" print(f\"{i + 1}.\", doc.page_content, \"\\n\")"
]
},
{
"cell_type": "markdown",
"id": "691a82d6",
"metadata": {},
"source": [
"## Qdrant as a Retriever\n",
"\n",
"Qdrant, as all the other vector stores, is a LangChain Retriever, by using cosine similarity. "
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "9427195f",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:26.031451Z",
"start_time": "2023-04-04T10:51:26.018763Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"VectorStoreRetriever(vectorstore=<langchain.vectorstores.qdrant.Qdrant object at 0x7fc4e5720a00>, search_type='similarity', search_kwargs={})"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"retriever = qdrant.as_retriever()\n",
"retriever"
]
},
{
"cell_type": "markdown",
"id": "0c851b4f",
"metadata": {},
"source": [
"It might be also specified to use MMR as a search strategy, instead of similarity."
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "64348f1b",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:26.043909Z",
"start_time": "2023-04-04T10:51:26.034284Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"VectorStoreRetriever(vectorstore=<langchain.vectorstores.qdrant.Qdrant object at 0x7fc4e5720a00>, search_type='mmr', search_kwargs={})"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"retriever = qdrant.as_retriever(search_type=\"mmr\")\n",
"retriever"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "f3c70c31",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T10:51:26.495652Z",
"start_time": "2023-04-04T10:51:26.046407Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you鈥檙e at it, pass the Disclose Act so Americans can know who is funding our elections. \\n\\nTonight, I鈥檇 like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer鈥攁n Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \\n\\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \\n\\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation鈥檚 top legal minds, who will continue Justice Breyer鈥檚 legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt'})"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"retriever.get_relevant_documents(query)[0]"
]
},
{
"cell_type": "markdown",
"id": "0358ecde",
"metadata": {},
"source": [
"## Customizing Qdrant\n",
"\n",
"Qdrant stores your vector embeddings along with the optional JSON-like payload. Payloads are optional, but since LangChain assumes the embeddings are generated from the documents, we keep the context data, so you can extract the original texts as well.\n",
"\n",
"By default, your document is going to be stored in the following payload structure:\n",
"\n",
"```json\n",
"{\n",
" \"page_content\": \"Lorem ipsum dolor sit amet\",\n",
" \"metadata\": {\n",
" \"foo\": \"bar\"\n",
" }\n",
"}\n",
"```\n",
"\n",
"You can, however, decide to use different keys for the page content and metadata. That's useful if you already have a collection that you'd like to reuse. You can always change the "
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "e4d6baf9",
"metadata": {
"ExecuteTime": {
"end_time": "2023-04-04T11:08:31.739141Z",
"start_time": "2023-04-04T11:08:30.229748Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"<langchain.vectorstores.qdrant.Qdrant at 0x7fc4e2baa230>"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Qdrant.from_documents(\n",
" docs, embeddings, \n",
" location=\":memory:\",\n",
" collection_name=\"my_documents_2\",\n",
" content_payload_key=\"my_page_content_key\",\n",
" metadata_payload_key=\"my_meta\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2300e785",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|