File size: 4,116 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "683953b3",
   "metadata": {},
   "source": [
    "# Pinecone\n",
    "\n",
    "[Pinecone](https://docs.pinecone.io/docs/overview) is a vector database with broad functionality.\n",
    "\n",
    "This notebook shows how to use functionality related to the `Pinecone` vector database.\n",
    "\n",
    "To use Pinecone, you must have an API key. \n",
    "Here are the [installation instructions](https://docs.pinecone.io/docs/quickstart)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b4c41cad-08ef-4f72-a545-2151e4598efe",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "!pip install pinecone-client"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c1e38361-c1fe-4ac6-86e9-c90ebaf7ae87",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import getpass\n",
    "\n",
    "PINECONE_API_KEY = getpass.getpass('Pinecone API Key:')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "02a536e0-d603-4d79-b18b-1ed562977b40",
   "metadata": {},
   "outputs": [],
   "source": [
    "PINECONE_ENV = getpass.getpass('Pinecone Environment:')"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "320af802-9271-46ee-948f-d2453933d44b",
   "metadata": {},
   "source": [
    "We want to use `OpenAIEmbeddings` so we have to get the OpenAI API Key."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ffea66e4-bc23-46a9-9580-b348dfe7b7a7",
   "metadata": {},
   "outputs": [],
   "source": [
    "os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "aac9563e",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from langchain.embeddings.openai import OpenAIEmbeddings\n",
    "from langchain.text_splitter import CharacterTextSplitter\n",
    "from langchain.vectorstores import Pinecone\n",
    "from langchain.document_loaders import TextLoader"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "a3c3999a",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.document_loaders import TextLoader\n",
    "loader = TextLoader('../../../state_of_the_union.txt')\n",
    "documents = loader.load()\n",
    "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
    "docs = text_splitter.split_documents(documents)\n",
    "\n",
    "embeddings = OpenAIEmbeddings()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6e104aee",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pinecone \n",
    "\n",
    "# initialize pinecone\n",
    "pinecone.init(\n",
    "    api_key=PINECONE_API_KEY,  # find at app.pinecone.io\n",
    "    environment=PINECONE_ENV  # next to api key in console\n",
    ")\n",
    "\n",
    "index_name = \"langchain-demo\"\n",
    "\n",
    "docsearch = Pinecone.from_documents(docs, embeddings, index_name=index_name)\n",
    "\n",
    "# if you already have an index, you can load it like this\n",
    "# docsearch = Pinecone.from_existing_index(index_name, embeddings)\n",
    "\n",
    "query = \"What did the president say about Ketanji Brown Jackson\"\n",
    "docs = docsearch.similarity_search(query)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9c608226",
   "metadata": {},
   "outputs": [],
   "source": [
    "print(docs[0].page_content)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a359ed74",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}