File size: 35,098 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#  Deep Lake\n",
    "\n",
    ">[Deep Lake](https://docs.activeloop.ai/) as a Multi-Modal Vector Store that stores embeddings and their metadata including text, jsons, images, audio, video, and more. It saves the data locally, in your cloud, or on Activeloop storage. It performs hybrid search including embeddings and their attributes.\n",
    "\n",
    "This notebook showcases basic functionality related to `Deep Lake`. While `Deep Lake` can store embeddings, it is capable of storing any type of data. It is a fully fledged serverless data lake with version control, query engine and streaming dataloader to deep learning frameworks.  \n",
    "\n",
    "For more information, please see the Deep Lake [documentation](https://docs.activeloop.ai) or [api reference](https://docs.deeplake.ai)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "!pip install openai deeplake tiktoken"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from langchain.embeddings.openai import OpenAIEmbeddings\n",
    "from langchain.text_splitter import CharacterTextSplitter\n",
    "from langchain.vectorstores import DeepLake"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdin",
     "output_type": "stream",
     "text": [
      "OpenAI API Key: ········\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import getpass\n",
    "\n",
    "os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:')\n",
    "embeddings = OpenAIEmbeddings()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from langchain.document_loaders import TextLoader\n",
    "\n",
    "loader = TextLoader('../../../state_of_the_union.txt')\n",
    "documents = loader.load()\n",
    "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
    "docs = text_splitter.split_documents(documents)\n",
    "\n",
    "embeddings = OpenAIEmbeddings()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Create a dataset locally at `./deeplake/`, then run similiarity search. The Deeplake+LangChain integration uses Deep Lake datasets under the hood, so `dataset` and `vector store` are used interchangeably. To create a dataset in your own cloud, or in the Deep Lake storage, [adjust the path accordingly](https://docs.activeloop.ai/storage-and-credentials/storage-options)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/leo/.local/lib/python3.10/site-packages/deeplake/util/check_latest_version.py:32: UserWarning: A newer version of deeplake (3.3.2) is available. It's recommended that you update to the latest version using `pip install -U deeplake`.\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "./my_deeplake/ loaded successfully.\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": []
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": []
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": []
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Evaluating ingest: 100%|██████████████████████████████████████| 1/1 [00:07<00:00\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Dataset(path='./my_deeplake/', tensors=['embedding', 'ids', 'metadata', 'text'])\n",
      "\n",
      "  tensor     htype     shape      dtype  compression\n",
      "  -------   -------   -------    -------  ------- \n",
      " embedding  generic  (42, 1536)  float32   None   \n",
      "    ids      text     (42, 1)      str     None   \n",
      " metadata    json     (42, 1)      str     None   \n",
      "   text      text     (42, 1)      str     None   \n"
     ]
    }
   ],
   "source": [
    "db = DeepLake(dataset_path=\"./my_deeplake/\", embedding_function=embeddings)\n",
    "db.add_documents(docs)\n",
    "# or shorter\n",
    "# db = DeepLake.from_documents(docs, dataset_path=\"./my_deeplake/\", embedding=embeddings, overwrite=True)\n",
    "query = \"What did the president say about Ketanji Brown Jackson\"\n",
    "docs = db.similarity_search(query)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
      "\n",
      "Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
      "\n",
      "One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
      "\n",
      "And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.\n"
     ]
    }
   ],
   "source": [
    "print(docs[0].page_content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Later, you can reload the dataset without recomputing embeddings"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "./my_deeplake/ loaded successfully.\n",
      "\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": []
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Deep Lake Dataset in ./my_deeplake/ already exists, loading from the storage\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Dataset(path='./my_deeplake/', read_only=True, tensors=['embedding', 'ids', 'metadata', 'text'])\n",
      "\n",
      "  tensor     htype     shape      dtype  compression\n",
      "  -------   -------   -------    -------  ------- \n",
      " embedding  generic  (42, 1536)  float32   None   \n",
      "    ids      text     (42, 1)      str     None   \n",
      " metadata    json     (42, 1)      str     None   \n",
      "   text      text     (42, 1)      str     None   \n"
     ]
    }
   ],
   "source": [
    "db = DeepLake(dataset_path=\"./my_deeplake/\", embedding_function=embeddings, read_only=True)\n",
    "docs = db.similarity_search(query)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Deep Lake, for now, is single writer and multiple reader. Setting `read_only=True` helps to avoid acquring the writer lock."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Retrieval Question/Answering"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/leo/.local/lib/python3.10/site-packages/langchain/llms/openai.py:624: UserWarning: You are trying to use a chat model. This way of initializing it is no longer supported. Instead, please use: `from langchain.chat_models import ChatOpenAI`\n",
      "  warnings.warn(\n"
     ]
    }
   ],
   "source": [
    "from langchain.chains import RetrievalQA\n",
    "from langchain.llms import OpenAIChat\n",
    "\n",
    "qa = RetrievalQA.from_chain_type(llm=OpenAIChat(model='gpt-3.5-turbo'), chain_type='stuff', retriever=db.as_retriever())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'The president nominated Ketanji Brown Jackson to serve on the United States Supreme Court. He described her as a former top litigator in private practice, a former federal public defender, a consensus builder, and from a family of public school educators and police officers. He also mentioned that she has received broad support from various groups since being nominated.'"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "query = 'What did the president say about Ketanji Brown Jackson'\n",
    "qa.run(query)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Attribute based filtering in metadata"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 54,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "./my_deeplake/ loaded successfully.\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Evaluating ingest: 100%|██████████| 1/1 [00:04<00:00\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Dataset(path='./my_deeplake/', tensors=['embedding', 'ids', 'metadata', 'text'])\n",
      "\n",
      "  tensor     htype     shape     dtype  compression\n",
      "  -------   -------   -------   -------  ------- \n",
      " embedding  generic  (4, 1536)  float32   None   \n",
      "    ids      text     (4, 1)      str     None   \n",
      " metadata    json     (4, 1)      str     None   \n",
      "   text      text     (4, 1)      str     None   \n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": []
    }
   ],
   "source": [
    "import random\n",
    "\n",
    "for d in docs:\n",
    "    d.metadata['year'] = random.randint(2012, 2014)\n",
    "\n",
    "db = DeepLake.from_documents(docs, embeddings, dataset_path=\"./my_deeplake/\", overwrite=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 55,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|██████████| 4/4 [00:00<00:00, 1080.24it/s]\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "[Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \\n\\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \\n\\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \\n\\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2013}),\n",
       " Document(page_content='And for our LGBTQ+ Americans, let’s finally get the bipartisan Equality Act to my desk. The onslaught of state laws targeting transgender Americans and their families is wrong. \\n\\nAs I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. \\n\\nWhile it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice. \\n\\nAnd soon, we’ll strengthen the Violence Against Women Act that I first wrote three decades ago. It is important for us to show the nation that we can come together and do big things. \\n\\nSo tonight I’m offering a Unity Agenda for the Nation. Four big things we can do together.  \\n\\nFirst, beat the opioid epidemic.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2013})]"
      ]
     },
     "execution_count": 55,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "db.similarity_search('What did the president say about Ketanji Brown Jackson', filter={'year': 2013})"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Choosing distance function\n",
    "Distance function `L2` for Euclidean, `L1` for Nuclear, `Max` l-infinity distnace, `cos` for cosine similarity, `dot` for dot product "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 56,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \\n\\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \\n\\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \\n\\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2013}),\n",
       " Document(page_content='A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \\n\\nAnd if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \\n\\nWe can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling.  \\n\\nWe’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers.  \\n\\nWe’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. \\n\\nWe’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2012}),\n",
       " Document(page_content='And for our LGBTQ+ Americans, let’s finally get the bipartisan Equality Act to my desk. The onslaught of state laws targeting transgender Americans and their families is wrong. \\n\\nAs I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. \\n\\nWhile it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice. \\n\\nAnd soon, we’ll strengthen the Violence Against Women Act that I first wrote three decades ago. It is important for us to show the nation that we can come together and do big things. \\n\\nSo tonight I’m offering a Unity Agenda for the Nation. Four big things we can do together.  \\n\\nFirst, beat the opioid epidemic.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2013}),\n",
       " Document(page_content='Tonight, I’m announcing a crackdown on these companies overcharging American businesses and consumers. \\n\\nAnd as Wall Street firms take over more nursing homes, quality in those homes has gone down and costs have gone up.  \\n\\nThat ends on my watch. \\n\\nMedicare is going to set higher standards for nursing homes and make sure your loved ones get the care they deserve and expect. \\n\\nWe’ll also cut costs and keep the economy going strong by giving workers a fair shot, provide more training and apprenticeships, hire them based on their skills not degrees. \\n\\nLet’s pass the Paycheck Fairness Act and paid leave.  \\n\\nRaise the minimum wage to $15 an hour and extend the Child Tax Credit, so no one has to raise a family in poverty. \\n\\nLet’s increase Pell Grants and increase our historic support of HBCUs, and invest in what Jill—our First Lady who teaches full-time—calls America’s best-kept secret: community colleges.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2012})]"
      ]
     },
     "execution_count": 56,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "db.similarity_search('What did the president say about Ketanji Brown Jackson?', distance_metric='cos')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Maximal Marginal relevance\n",
    "Using maximal marginal relevance"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \\n\\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \\n\\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \\n\\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2013}),\n",
       " Document(page_content='Tonight, I’m announcing a crackdown on these companies overcharging American businesses and consumers. \\n\\nAnd as Wall Street firms take over more nursing homes, quality in those homes has gone down and costs have gone up.  \\n\\nThat ends on my watch. \\n\\nMedicare is going to set higher standards for nursing homes and make sure your loved ones get the care they deserve and expect. \\n\\nWe’ll also cut costs and keep the economy going strong by giving workers a fair shot, provide more training and apprenticeships, hire them based on their skills not degrees. \\n\\nLet’s pass the Paycheck Fairness Act and paid leave.  \\n\\nRaise the minimum wage to $15 an hour and extend the Child Tax Credit, so no one has to raise a family in poverty. \\n\\nLet’s increase Pell Grants and increase our historic support of HBCUs, and invest in what Jill—our First Lady who teaches full-time—calls America’s best-kept secret: community colleges.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2012}),\n",
       " Document(page_content='A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \\n\\nAnd if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \\n\\nWe can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling.  \\n\\nWe’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers.  \\n\\nWe’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. \\n\\nWe’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2012}),\n",
       " Document(page_content='And for our LGBTQ+ Americans, let’s finally get the bipartisan Equality Act to my desk. The onslaught of state laws targeting transgender Americans and their families is wrong. \\n\\nAs I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. \\n\\nWhile it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice. \\n\\nAnd soon, we’ll strengthen the Violence Against Women Act that I first wrote three decades ago. It is important for us to show the nation that we can come together and do big things. \\n\\nSo tonight I’m offering a Unity Agenda for the Nation. Four big things we can do together.  \\n\\nFirst, beat the opioid epidemic.', metadata={'source': '../../../state_of_the_union.txt', 'year': 2013})]"
      ]
     },
     "execution_count": 57,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "db.max_marginal_relevance_search('What did the president say about Ketanji Brown Jackson?')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Delete dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 59,
   "metadata": {},
   "outputs": [],
   "source": [
    "db.delete_dataset()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "and if delete fails you can also force delete"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 61,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": []
    }
   ],
   "source": [
    "DeepLake.force_delete_by_path(\"./my_deeplake\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Deep Lake datasets on cloud (Activeloop, AWS, GCS, etc.) or in memory\n",
    "By default deep lake datasets are stored locally, in case you want to store them in memory, in the Deep Lake Managed DB, or in any object storage, you can provide the [corresponding path to the dataset](https://docs.activeloop.ai/storage-and-credentials/storage-options). You can retrieve your user token from [app.activeloop.ai](https://app.activeloop.ai/)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 62,
   "metadata": {},
   "outputs": [],
   "source": [
    "os.environ['ACTIVELOOP_TOKEN'] = getpass.getpass('Activeloop Token:')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 63,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Your Deep Lake dataset has been successfully created!\n",
      "The dataset is private so make sure you are logged in!\n",
      "This dataset can be visualized in Jupyter Notebook by ds.visualize() or at https://app.activeloop.ai/davitbun/langchain_test\n",
      "hub://davitbun/langchain_test loaded successfully.\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Evaluating ingest: 100%|██████████| 1/1 [00:14<00:00\n",
      " \r"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Dataset(path='hub://davitbun/langchain_test', tensors=['embedding', 'ids', 'metadata', 'text'])\n",
      "\n",
      "  tensor     htype     shape     dtype  compression\n",
      "  -------   -------   -------   -------  ------- \n",
      " embedding  generic  (4, 1536)  float32   None   \n",
      "    ids      text     (4, 1)      str     None   \n",
      " metadata    json     (4, 1)      str     None   \n",
      "   text      text     (4, 1)      str     None   \n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "['d6d6ccb4-e187-11ed-b66d-41c5f7b85421',\n",
       " 'd6d6ccb5-e187-11ed-b66d-41c5f7b85421',\n",
       " 'd6d6ccb6-e187-11ed-b66d-41c5f7b85421',\n",
       " 'd6d6ccb7-e187-11ed-b66d-41c5f7b85421']"
      ]
     },
     "execution_count": 63,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Embed and store the texts\n",
    "username = \"<username>\" # your username on app.activeloop.ai   \n",
    "dataset_path = f\"hub://{username}/langchain_test\" # could be also ./local/path (much faster locally), s3://bucket/path/to/dataset, gcs://path/to/dataset, etc.\n",
    "\n",
    "embedding = OpenAIEmbeddings()\n",
    "db = DeepLake(dataset_path=dataset_path, embedding_function=embeddings, overwrite=True)\n",
    "db.add_documents(docs)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 64,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
      "\n",
      "Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
      "\n",
      "One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
      "\n",
      "And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.\n"
     ]
    }
   ],
   "source": [
    "query = \"What did the president say about Ketanji Brown Jackson\"\n",
    "docs = db.similarity_search(query)\n",
    "print(docs[0].page_content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Creating dataset on AWS S3"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 82,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "s3://hub-2.0-datasets-n/langchain_test loaded successfully.\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Evaluating ingest: 100%|██████████| 1/1 [00:10<00:00\n",
      "\\"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Dataset(path='s3://hub-2.0-datasets-n/langchain_test', tensors=['embedding', 'ids', 'metadata', 'text'])\n",
      "\n",
      "  tensor     htype     shape     dtype  compression\n",
      "  -------   -------   -------   -------  ------- \n",
      " embedding  generic  (4, 1536)  float32   None   \n",
      "    ids      text     (4, 1)      str     None   \n",
      " metadata    json     (4, 1)      str     None   \n",
      "   text      text     (4, 1)      str     None   \n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      " \r"
     ]
    }
   ],
   "source": [
    "dataset_path = f\"s3://BUCKET/langchain_test\" # could be also ./local/path (much faster locally), hub://bucket/path/to/dataset, gcs://path/to/dataset, etc.\n",
    "\n",
    "embedding = OpenAIEmbeddings()\n",
    "db = DeepLake.from_documents(docs, dataset_path=dataset_path, embedding=embeddings, overwrite=True, creds = {\n",
    "   'aws_access_key_id': os.environ['AWS_ACCESS_KEY_ID'], \n",
    "   'aws_secret_access_key':  os.environ['AWS_SECRET_ACCESS_KEY'], \n",
    "   'aws_session_token': os.environ['AWS_SESSION_TOKEN'], # Optional\n",
    "})"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Deep Lake API\n",
    "you can access the Deep Lake  dataset at `db.ds`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 66,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Dataset(path='hub://davitbun/langchain_test', tensors=['embedding', 'ids', 'metadata', 'text'])\n",
      "\n",
      "  tensor     htype     shape     dtype  compression\n",
      "  -------   -------   -------   -------  ------- \n",
      " embedding  generic  (4, 1536)  float32   None   \n",
      "    ids      text     (4, 1)      str     None   \n",
      " metadata    json     (4, 1)      str     None   \n",
      "   text      text     (4, 1)      str     None   \n"
     ]
    }
   ],
   "source": [
    "# get structure of the dataset\n",
    "db.ds.summary()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 67,
   "metadata": {},
   "outputs": [],
   "source": [
    "# get embeddings numpy array\n",
    "embeds = db.ds.embedding.numpy()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Transfer local dataset to cloud\n",
    "Copy already created dataset to the cloud. You can also transfer from cloud to local."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 73,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Copying dataset: 100%|██████████| 56/56 [00:38<00:00\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "This dataset can be visualized in Jupyter Notebook by ds.visualize() or at https://app.activeloop.ai/davitbun/langchain_test_copy\n",
      "Your Deep Lake dataset has been successfully created!\n",
      "The dataset is private so make sure you are logged in!\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "Dataset(path='hub://davitbun/langchain_test_copy', tensors=['embedding', 'ids', 'metadata', 'text'])"
      ]
     },
     "execution_count": 73,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import deeplake\n",
    "username = \"davitbun\" # your username on app.activeloop.ai   \n",
    "source = f\"hub://{username}/langchain_test\" # could be local, s3, gcs, etc.\n",
    "destination = f\"hub://{username}/langchain_test_copy\" # could be local, s3, gcs, etc.\n",
    "\n",
    "deeplake.deepcopy(src=source, dest=destination, overwrite=True)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 76,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      " \r"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "This dataset can be visualized in Jupyter Notebook by ds.visualize() or at https://app.activeloop.ai/davitbun/langchain_test_copy\n",
      "\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "hub://davitbun/langchain_test_copy loaded successfully.\n",
      "\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Deep Lake Dataset in hub://davitbun/langchain_test_copy already exists, loading from the storage\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Dataset(path='hub://davitbun/langchain_test_copy', tensors=['embedding', 'ids', 'metadata', 'text'])\n",
      "\n",
      "  tensor     htype     shape     dtype  compression\n",
      "  -------   -------   -------   -------  ------- \n",
      " embedding  generic  (4, 1536)  float32   None   \n",
      "    ids      text     (4, 1)      str     None   \n",
      " metadata    json     (4, 1)      str     None   \n",
      "   text      text     (4, 1)      str     None   \n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Evaluating ingest: 100%|██████████| 1/1 [00:31<00:00\n",
      "-"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Dataset(path='hub://davitbun/langchain_test_copy', tensors=['embedding', 'ids', 'metadata', 'text'])\n",
      "\n",
      "  tensor     htype     shape     dtype  compression\n",
      "  -------   -------   -------   -------  ------- \n",
      " embedding  generic  (8, 1536)  float32   None   \n",
      "    ids      text     (8, 1)      str     None   \n",
      " metadata    json     (8, 1)      str     None   \n",
      "   text      text     (8, 1)      str     None   \n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      " \r"
     ]
    },
    {
     "data": {
      "text/plain": [
       "['ad42f3fe-e188-11ed-b66d-41c5f7b85421',\n",
       " 'ad42f3ff-e188-11ed-b66d-41c5f7b85421',\n",
       " 'ad42f400-e188-11ed-b66d-41c5f7b85421',\n",
       " 'ad42f401-e188-11ed-b66d-41c5f7b85421']"
      ]
     },
     "execution_count": 76,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "db = DeepLake(dataset_path=destination, embedding_function=embeddings)\n",
    "db.add_documents(docs)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.6"
  },
  "vscode": {
   "interpreter": {
    "hash": "7b14174bb6f9d4680b62ac2a6390e1ce94fbfabf172a10844870451d539c58d6"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}