File size: 2,624 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "ce0f17b9",
   "metadata": {},
   "source": [
    "# Weaviate Hybrid Search\n",
    "\n",
    "This notebook shows how to use [Weaviate hybrid search](https://weaviate.io/blog/hybrid-search-explained) as a LangChain retriever."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "c10dd962",
   "metadata": {},
   "outputs": [],
   "source": [
    "import weaviate\n",
    "import os\n",
    "\n",
    "WEAVIATE_URL = \"...\"\n",
    "client = weaviate.Client(\n",
    "    url=WEAVIATE_URL,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "f47a2bfe",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.retrievers.weaviate_hybrid_search import WeaviateHybridSearchRetriever\n",
    "from langchain.schema import Document"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "f2eff08e",
   "metadata": {},
   "outputs": [],
   "source": [
    "retriever = WeaviateHybridSearchRetriever(client, index_name=\"LangChain\", text_key=\"text\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "cd8a7b17",
   "metadata": {},
   "outputs": [],
   "source": [
    "docs = [Document(page_content=\"foo\")]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "3c5970db",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['3f79d151-fb84-44cf-85e0-8682bfe145e0']"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "retriever.add_documents(docs)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "bf7dbb98",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[Document(page_content='foo', metadata={})]"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "retriever.get_relevant_documents(\"foo\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b2bc87c1",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}