File size: 4,774 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "fc0db1bc",
   "metadata": {},
   "source": [
    "# VectorStore Retriever\n",
    "\n",
    "The index - and therefore the retriever - that LangChain has the most support for is a VectorStoreRetriever. As the name suggests, this retriever is backed heavily by a VectorStore.\n",
    "\n",
    "Once you construct a VectorStore, its very easy to construct a retriever. Let's walk through an example."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "5831703b",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.document_loaders import TextLoader\n",
    "loader = TextLoader('../../../state_of_the_union.txt')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "9fbcc58f",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.text_splitter import CharacterTextSplitter\n",
    "from langchain.vectorstores import FAISS\n",
    "from langchain.embeddings import OpenAIEmbeddings\n",
    "\n",
    "documents = loader.load()\n",
    "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
    "texts = text_splitter.split_documents(documents)\n",
    "embeddings = OpenAIEmbeddings()\n",
    "db = FAISS.from_documents(texts, embeddings)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "0cbfb1af",
   "metadata": {},
   "outputs": [],
   "source": [
    "retriever = db.as_retriever()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "fc12700b",
   "metadata": {},
   "outputs": [],
   "source": [
    "docs = retriever.get_relevant_documents(\"what did he say about ketanji brown jackson\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "79b783de",
   "metadata": {},
   "source": [
    "## Maximum Marginal Relevance Retrieval\n",
    "By default, the vectorstore retriever uses similarity search. If the underlying vectorstore support maximum marginal relevance search, you can specify that as the search type."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "44c7303e",
   "metadata": {},
   "outputs": [],
   "source": [
    "retriever = db.as_retriever(search_type=\"mmr\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "d16ceec6",
   "metadata": {},
   "outputs": [],
   "source": [
    "docs = retriever.get_relevant_documents(\"what did he say abotu ketanji brown jackson\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2d958271",
   "metadata": {},
   "source": [
    "## Similarity Score Threshold Retrieval\n",
    "\n",
    "You can also a retrieval method that sets a similarity score threshold and only returns documents with a score above that threshold"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "d4272ad8",
   "metadata": {},
   "outputs": [],
   "source": [
    "retriever = db.as_retriever(search_type=\"similarity_score_threshold\", search_kwargs={\"score_threshold\": .5})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "438e761d",
   "metadata": {},
   "outputs": [],
   "source": [
    "docs = retriever.get_relevant_documents(\"what did he say abotu ketanji brown jackson\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c23b7698",
   "metadata": {},
   "source": [
    "## Specifying top k\n",
    "You can also specify search kwargs like `k` to use when doing retrieval."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "b5f44cdf",
   "metadata": {},
   "outputs": [],
   "source": [
    "retriever = db.as_retriever(search_kwargs={\"k\": 1})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "56b6a545",
   "metadata": {},
   "outputs": [],
   "source": [
    "docs = retriever.get_relevant_documents(\"what did he say abotu ketanji brown jackson\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "b5416858",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(docs)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9a658023",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}