Spaces:
Sleeping
Sleeping
File size: 2,639 Bytes
cfd3735 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
{
"cells": [
{
"cell_type": "markdown",
"id": "ab66dd43",
"metadata": {},
"source": [
"# TF-IDF Retriever\n",
"\n",
"This notebook goes over how to use a retriever that under the hood uses TF-IDF using scikit-learn.\n",
"\n",
"For more information on the details of TF-IDF see [this blog post](https://medium.com/data-science-bootcamp/tf-idf-basics-of-information-retrieval-48de122b2a4c)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "393ac030",
"metadata": {},
"outputs": [],
"source": [
"from langchain.retrievers import TFIDFRetriever"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a801b57c",
"metadata": {},
"outputs": [],
"source": [
"# !pip install scikit-learn"
]
},
{
"cell_type": "markdown",
"id": "aaf80e7f",
"metadata": {},
"source": [
"## Create New Retriever with Texts"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "98b1c017",
"metadata": {},
"outputs": [],
"source": [
"retriever = TFIDFRetriever.from_texts([\"foo\", \"bar\", \"world\", \"hello\", \"foo bar\"])"
]
},
{
"cell_type": "markdown",
"id": "08437fa2",
"metadata": {},
"source": [
"## Use Retriever\n",
"\n",
"We can now use the retriever!"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c0455218",
"metadata": {},
"outputs": [],
"source": [
"result = retriever.get_relevant_documents(\"foo\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "7dfa5c29",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='foo', metadata={}),\n",
" Document(page_content='foo bar', metadata={}),\n",
" Document(page_content='hello', metadata={}),\n",
" Document(page_content='world', metadata={})]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "74bd9256",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|