File size: 2,639 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "ab66dd43",
   "metadata": {},
   "source": [
    "# TF-IDF Retriever\n",
    "\n",
    "This notebook goes over how to use a retriever that under the hood uses TF-IDF using scikit-learn.\n",
    "\n",
    "For more information on the details of TF-IDF see [this blog post](https://medium.com/data-science-bootcamp/tf-idf-basics-of-information-retrieval-48de122b2a4c)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "393ac030",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.retrievers import TFIDFRetriever"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a801b57c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# !pip install scikit-learn"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "aaf80e7f",
   "metadata": {},
   "source": [
    "## Create New Retriever with Texts"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "98b1c017",
   "metadata": {},
   "outputs": [],
   "source": [
    "retriever = TFIDFRetriever.from_texts([\"foo\", \"bar\", \"world\", \"hello\", \"foo bar\"])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "08437fa2",
   "metadata": {},
   "source": [
    "## Use Retriever\n",
    "\n",
    "We can now use the retriever!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "c0455218",
   "metadata": {},
   "outputs": [],
   "source": [
    "result = retriever.get_relevant_documents(\"foo\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "7dfa5c29",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[Document(page_content='foo', metadata={}),\n",
       " Document(page_content='foo bar', metadata={}),\n",
       " Document(page_content='hello', metadata={}),\n",
       " Document(page_content='world', metadata={})]"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "74bd9256",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}