File size: 3,650 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "ab66dd43",
   "metadata": {},
   "source": [
    "# ElasticSearch BM25\n",
    "\n",
    "This notebook goes over how to use a retriever that under the hood uses ElasticSearcha and BM25.\n",
    "\n",
    "For more information on the details of BM25 see [this blog post](https://www.elastic.co/blog/practical-bm25-part-2-the-bm25-algorithm-and-its-variables)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "393ac030",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.retrievers import ElasticSearchBM25Retriever"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "aaf80e7f",
   "metadata": {},
   "source": [
    "## Create New Retriever"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "bcb3c8c2",
   "metadata": {},
   "outputs": [],
   "source": [
    "elasticsearch_url=\"http://localhost:9200\"\n",
    "retriever = ElasticSearchBM25Retriever.create(elasticsearch_url, \"langchain-index-4\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "b605284d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Alternatively, you can load an existing index\n",
    "# import elasticsearch\n",
    "# elasticsearch_url=\"http://localhost:9200\"\n",
    "# retriever = ElasticSearchBM25Retriever(elasticsearch.Elasticsearch(elasticsearch_url), \"langchain-index\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1c518c42",
   "metadata": {},
   "source": [
    "## Add texts (if necessary)\n",
    "\n",
    "We can optionally add texts to the retriever (if they aren't already in there)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "98b1c017",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['cbd4cb47-8d9f-4f34-b80e-ea871bc49856',\n",
       " 'f3bd2e24-76d1-4f9b-826b-ec4c0e8c7365',\n",
       " '8631bfc8-7c12-48ee-ab56-8ad5f373676e',\n",
       " '8be8374c-3253-4d87-928d-d73550a2ecf0',\n",
       " 'd79f457b-2842-4eab-ae10-77aa420b53d7']"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "retriever.add_texts([\"foo\", \"bar\", \"world\", \"hello\", \"foo bar\"])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "08437fa2",
   "metadata": {},
   "source": [
    "## Use Retriever\n",
    "\n",
    "We can now use the retriever!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "c0455218",
   "metadata": {},
   "outputs": [],
   "source": [
    "result = retriever.get_relevant_documents(\"foo\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "7dfa5c29",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[Document(page_content='foo', metadata={}),\n",
       " Document(page_content='foo bar', metadata={})]"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "74bd9256",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}