Spaces:
Sleeping
Sleeping
File size: 13,397 Bytes
cfd3735 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
{
"cells": [
{
"cell_type": "markdown",
"id": "fcc8bb1c",
"metadata": {},
"source": [
"# Getting Started\n",
"\n",
"LangChain primary focuses on constructing indexes with the goal of using them as a Retriever. In order to best understand what this means, it's worth highlighting what the base Retriever interface is. The `BaseRetriever` class in LangChain is as follows:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "b09ac324",
"metadata": {},
"outputs": [],
"source": [
"from abc import ABC, abstractmethod\n",
"from typing import List\n",
"from langchain.schema import Document\n",
"\n",
"class BaseRetriever(ABC):\n",
" @abstractmethod\n",
" def get_relevant_documents(self, query: str) -> List[Document]:\n",
" \"\"\"Get texts relevant for a query.\n",
"\n",
" Args:\n",
" query: string to find relevant texts for\n",
"\n",
" Returns:\n",
" List of relevant documents\n",
" \"\"\""
]
},
{
"cell_type": "markdown",
"id": "e19d4adb",
"metadata": {},
"source": [
"It's that simple! The `get_relevant_documents` method can be implemented however you see fit.\n",
"\n",
"Of course, we also help construct what we think useful Retrievers are. The main type of Retriever that we focus on is a Vectorstore retriever. We will focus on that for the rest of this guide.\n",
"\n",
"In order to understand what a vectorstore retriever is, it's important to understand what a Vectorstore is. So let's look at that."
]
},
{
"cell_type": "markdown",
"id": "2244801b",
"metadata": {},
"source": [
"By default, LangChain uses [Chroma](../../ecosystem/chroma.md) as the vectorstore to index and search embeddings. To walk through this tutorial, we'll first need to install `chromadb`.\n",
"\n",
"```\n",
"pip install chromadb\n",
"```\n",
"\n",
"This example showcases question answering over documents.\n",
"We have chosen this as the example for getting started because it nicely combines a lot of different elements (Text splitters, embeddings, vectorstores) and then also shows how to use them in a chain.\n",
"\n",
"Question answering over documents consists of four steps:\n",
"\n",
"1. Create an index\n",
"2. Create a Retriever from that index\n",
"3. Create a question answering chain\n",
"4. Ask questions!\n",
"\n",
"Each of the steps has multiple sub steps and potential configurations. In this notebook we will primarily focus on (1). We will start by showing the one-liner for doing so, but then break down what is actually going on.\n",
"\n",
"First, let's import some common classes we'll use no matter what."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8d369452",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import RetrievalQA\n",
"from langchain.llms import OpenAI"
]
},
{
"cell_type": "markdown",
"id": "07c1e3b9",
"metadata": {},
"source": [
"Next in the generic setup, let's specify the document loader we want to use. You can download the `state_of_the_union.txt` file [here](https://github.com/hwchase17/langchain/blob/master/docs/modules/state_of_the_union.txt)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "33958a86",
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import TextLoader\n",
"loader = TextLoader('../state_of_the_union.txt', encoding='utf8')"
]
},
{
"cell_type": "markdown",
"id": "489c74bb",
"metadata": {},
"source": [
"## One Line Index Creation\n",
"\n",
"To get started as quickly as possible, we can use the `VectorstoreIndexCreator`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "403fc231",
"metadata": {},
"outputs": [],
"source": [
"from langchain.indexes import VectorstoreIndexCreator"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "57a8a199",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running Chroma using direct local API.\n",
"Using DuckDB in-memory for database. Data will be transient.\n"
]
}
],
"source": [
"index = VectorstoreIndexCreator().from_loaders([loader])"
]
},
{
"cell_type": "markdown",
"id": "f3493fa4",
"metadata": {},
"source": [
"Now that the index is created, we can use it to ask questions of the data! Note that under the hood this is actually doing a few steps as well, which we will cover later in this guide."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "23d0d234",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\" The president said that Ketanji Brown Jackson is one of the nation's top legal minds, a former top litigator in private practice, a former federal public defender, and from a family of public school educators and police officers. He also said that she is a consensus builder and has received a broad range of support from the Fraternal Order of Police to former judges appointed by Democrats and Republicans.\""
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"index.query(query)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "ae46b239",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'question': 'What did the president say about Ketanji Brown Jackson',\n",
" 'answer': \" The president said that he nominated Circuit Court of Appeals Judge Ketanji Brown Jackson, one of the nation's top legal minds, to continue Justice Breyer's legacy of excellence, and that she has received a broad range of support from the Fraternal Order of Police to former judges appointed by Democrats and Republicans.\\n\",\n",
" 'sources': '../state_of_the_union.txt'}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"index.query_with_sources(query)"
]
},
{
"cell_type": "markdown",
"id": "ff100212",
"metadata": {},
"source": [
"What is returned from the `VectorstoreIndexCreator` is `VectorStoreIndexWrapper`, which provides these nice `query` and `query_with_sources` functionality. If we just wanted to access the vectorstore directly, we can also do that."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "b04f3c10",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<langchain.vectorstores.chroma.Chroma at 0x119aa5940>"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"index.vectorstore"
]
},
{
"cell_type": "markdown",
"id": "297ccfa4",
"metadata": {},
"source": [
"If we then want to access the VectorstoreRetriever, we can do that with:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "b8fef77d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"VectorStoreRetriever(vectorstore=<langchain.vectorstores.chroma.Chroma object at 0x119aa5940>, search_kwargs={})"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"index.vectorstore.as_retriever()"
]
},
{
"cell_type": "markdown",
"id": "2cb6d2eb",
"metadata": {},
"source": [
"## Walkthrough\n",
"\n",
"Okay, so what's actually going on? How is this index getting created?\n",
"\n",
"A lot of the magic is being hid in this `VectorstoreIndexCreator`. What is this doing?\n",
"\n",
"There are three main steps going on after the documents are loaded:\n",
"\n",
"1. Splitting documents into chunks\n",
"2. Creating embeddings for each document\n",
"3. Storing documents and embeddings in a vectorstore\n",
"\n",
"Let's walk through this in code"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "54270abc",
"metadata": {},
"outputs": [],
"source": [
"documents = loader.load()"
]
},
{
"cell_type": "markdown",
"id": "9fdc0fc2",
"metadata": {},
"source": [
"Next, we will split the documents into chunks."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "afecb8cf",
"metadata": {},
"outputs": [],
"source": [
"from langchain.text_splitter import CharacterTextSplitter\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"texts = text_splitter.split_documents(documents)"
]
},
{
"cell_type": "markdown",
"id": "4bebc041",
"metadata": {},
"source": [
"We will then select which embeddings we want to use."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "9eaaa735",
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import OpenAIEmbeddings\n",
"embeddings = OpenAIEmbeddings()"
]
},
{
"cell_type": "markdown",
"id": "24612905",
"metadata": {},
"source": [
"We now create the vectorstore to use as the index."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "5c7049db",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running Chroma using direct local API.\n",
"Using DuckDB in-memory for database. Data will be transient.\n"
]
}
],
"source": [
"from langchain.vectorstores import Chroma\n",
"db = Chroma.from_documents(texts, embeddings)"
]
},
{
"cell_type": "markdown",
"id": "f0ef85a6",
"metadata": {},
"source": [
"So that's creating the index. Then, we expose this index in a retriever interface."
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "13495c77",
"metadata": {},
"outputs": [],
"source": [
"retriever = db.as_retriever()"
]
},
{
"cell_type": "markdown",
"id": "30c4e5c6",
"metadata": {},
"source": [
"Then, as before, we create a chain and use it to answer questions!"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "3018f865",
"metadata": {},
"outputs": [],
"source": [
"qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type=\"stuff\", retriever=retriever)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "032a47f8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\" The President said that Judge Ketanji Brown Jackson is one of the nation's top legal minds, a former top litigator in private practice, a former federal public defender, and from a family of public school educators and police officers. He said she is a consensus builder and has received a broad range of support from organizations such as the Fraternal Order of Police and former judges appointed by Democrats and Republicans.\""
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"qa.run(query)"
]
},
{
"cell_type": "markdown",
"id": "9464690e",
"metadata": {},
"source": [
"`VectorstoreIndexCreator` is just a wrapper around all this logic. It is configurable in the text splitter it uses, the embeddings it uses, and the vectorstore it uses. For example, you can configure it as below:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "4001bbc6",
"metadata": {},
"outputs": [],
"source": [
"index_creator = VectorstoreIndexCreator(\n",
" vectorstore_cls=Chroma, \n",
" embedding=OpenAIEmbeddings(),\n",
" text_splitter=CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
")"
]
},
{
"cell_type": "markdown",
"id": "78d8d143",
"metadata": {},
"source": [
"Hopefully this highlights what is going on under the hood of `VectorstoreIndexCreator`. While we think it's important to have a simple way to create indexes, we also think it's important to understand what's going on under the hood."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dd7257bf",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
},
"vscode": {
"interpreter": {
"hash": "b1677b440931f40d89ef8be7bf03acb108ce003de0ac9b18e8d43753ea2e7103"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|