File size: 7,139 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "a6850189",
   "metadata": {},
   "source": [
    "# Graph QA\n",
    "\n",
    "This notebook goes over how to do question answering over a graph data structure."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9e516e3e",
   "metadata": {},
   "source": [
    "## Create the graph\n",
    "\n",
    "In this section, we construct an example graph. At the moment, this works best for small pieces of text."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "3849873d",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.indexes import GraphIndexCreator\n",
    "from langchain.llms import OpenAI\n",
    "from langchain.document_loaders import TextLoader"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "05d65c87",
   "metadata": {},
   "outputs": [],
   "source": [
    "index_creator = GraphIndexCreator(llm=OpenAI(temperature=0))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "0a45a5b9",
   "metadata": {},
   "outputs": [],
   "source": [
    "with open(\"../../state_of_the_union.txt\") as f:\n",
    "    all_text = f.read()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3fca3e1b",
   "metadata": {},
   "source": [
    "We will use just a small snippet, because extracting the knowledge triplets is a bit intensive at the moment."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "80522bd6",
   "metadata": {},
   "outputs": [],
   "source": [
    "text = \"\\n\".join(all_text.split(\"\\n\\n\")[105:108])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "da5aad5a",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'It won’t look like much, but if you stop and look closely, you’ll see a “Field of dreams,” the ground on which America’s future will be built. \\nThis is where Intel, the American company that helped build Silicon Valley, is going to build its $20 billion semiconductor “mega site”. \\nUp to eight state-of-the-art factories in one place. 10,000 new good-paying jobs. '"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "8dad7b59",
   "metadata": {},
   "outputs": [],
   "source": [
    "graph = index_creator.from_text(text)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2118f363",
   "metadata": {},
   "source": [
    "We can inspect the created graph."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "32878c13",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[('Intel', '$20 billion semiconductor \"mega site\"', 'is going to build'),\n",
       " ('Intel', 'state-of-the-art factories', 'is building'),\n",
       " ('Intel', '10,000 new good-paying jobs', 'is creating'),\n",
       " ('Intel', 'Silicon Valley', 'is helping build'),\n",
       " ('Field of dreams',\n",
       "  \"America's future will be built\",\n",
       "  'is the ground on which')]"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "graph.get_triples()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e9737be1",
   "metadata": {},
   "source": [
    "## Querying the graph\n",
    "We can now use the graph QA chain to ask question of the graph"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "76edc854",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.chains import GraphQAChain"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "8e7719b4",
   "metadata": {},
   "outputs": [],
   "source": [
    "chain = GraphQAChain.from_llm(OpenAI(temperature=0), graph=graph, verbose=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "f6511169",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new GraphQAChain chain...\u001b[0m\n",
      "Entities Extracted:\n",
      "\u001b[32;1m\u001b[1;3m Intel\u001b[0m\n",
      "Full Context:\n",
      "\u001b[32;1m\u001b[1;3mIntel is going to build $20 billion semiconductor \"mega site\"\n",
      "Intel is building state-of-the-art factories\n",
      "Intel is creating 10,000 new good-paying jobs\n",
      "Intel is helping build Silicon Valley\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "' Intel is going to build a $20 billion semiconductor \"mega site\" with state-of-the-art factories, creating 10,000 new good-paying jobs and helping to build Silicon Valley.'"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "chain.run(\"what is Intel going to build?\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "410aafa0",
   "metadata": {},
   "source": [
    "## Save the graph\n",
    "We can also save and load the graph."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "bc72cca0",
   "metadata": {},
   "outputs": [],
   "source": [
    "graph.write_to_gml(\"graph.gml\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "652760ad",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.indexes.graph import NetworkxEntityGraph"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "eae591fe",
   "metadata": {},
   "outputs": [],
   "source": [
    "loaded_graph = NetworkxEntityGraph.from_gml(\"graph.gml\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "9439d419",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[('Intel', '$20 billion semiconductor \"mega site\"', 'is going to build'),\n",
       " ('Intel', 'state-of-the-art factories', 'is building'),\n",
       " ('Intel', '10,000 new good-paying jobs', 'is creating'),\n",
       " ('Intel', 'Silicon Valley', 'is helping build'),\n",
       " ('Field of dreams',\n",
       "  \"America's future will be built\",\n",
       "  'is the ground on which')]"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "loaded_graph.get_triples()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "045796cf",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}