Spaces:
Sleeping
Sleeping
File size: 16,652 Bytes
cfd3735 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Getting Started\n",
"\n",
"In this tutorial, we will learn about creating simple chains in LangChain. We will learn how to create a chain, add components to it, and run it.\n",
"\n",
"In this tutorial, we will cover:\n",
"- Using a simple LLM chain\n",
"- Creating sequential chains\n",
"- Creating a custom chain\n",
"\n",
"## Why do we need chains?\n",
"\n",
"Chains allow us to combine multiple components together to create a single, coherent application. For example, we can create a chain that takes user input, formats it with a PromptTemplate, and then passes the formatted response to an LLM. We can build more complex chains by combining multiple chains together, or by combining chains with other components.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Quick start: Using `LLMChain`\n",
"\n",
"The `LLMChain` is a simple chain that takes in a prompt template, formats it with the user input and returns the response from an LLM.\n",
"\n",
"\n",
"To use the `LLMChain`, first create a prompt template."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain.llms import OpenAI\n",
"\n",
"llm = OpenAI(temperature=0.9)\n",
"prompt = PromptTemplate(\n",
" input_variables=[\"product\"],\n",
" template=\"What is a good name for a company that makes {product}?\",\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can now create a very simple chain that will take user input, format the prompt with it, and then send it to the LLM."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"SockSplash!\n"
]
}
],
"source": [
"from langchain.chains import LLMChain\n",
"chain = LLMChain(llm=llm, prompt=prompt)\n",
"\n",
"# Run the chain only specifying the input variable.\n",
"print(chain.run(\"colorful socks\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can use a chat model in an `LLMChain` as well:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Rainbow Sox Co.\n"
]
}
],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts.chat import (\n",
" ChatPromptTemplate,\n",
" HumanMessagePromptTemplate,\n",
")\n",
"human_message_prompt = HumanMessagePromptTemplate(\n",
" prompt=PromptTemplate(\n",
" template=\"What is a good name for a company that makes {product}?\",\n",
" input_variables=[\"product\"],\n",
" )\n",
" )\n",
"chat_prompt_template = ChatPromptTemplate.from_messages([human_message_prompt])\n",
"chat = ChatOpenAI(temperature=0.9)\n",
"chain = LLMChain(llm=chat, prompt=chat_prompt_template)\n",
"print(chain.run(\"colorful socks\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Different ways of calling chains\n",
"\n",
"All classes inherited from `Chain` offer a few ways of running chain logic. The most direct one is by using `__call__`:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'adjective': 'corny',\n",
" 'text': 'Why did the tomato turn red? Because it saw the salad dressing!'}"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat = ChatOpenAI(temperature=0)\n",
"prompt_template = \"Tell me a {adjective} joke\"\n",
"llm_chain = LLMChain(\n",
" llm=chat,\n",
" prompt=PromptTemplate.from_template(prompt_template)\n",
")\n",
"\n",
"llm_chain(inputs={\"adjective\":\"corny\"})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"By default, `__call__` returns both the input and output key values. You can configure it to only return output key values by setting `return_only_outputs` to `True`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'text': 'Why did the tomato turn red? Because it saw the salad dressing!'}"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_chain(\"corny\", return_only_outputs=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If the `Chain` only outputs one output key (i.e. only has one element in its `output_keys`), you can use `run` method. Note that `run` outputs a string instead of a dictionary."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['text']"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# llm_chain only has one output key, so we can use run\n",
"llm_chain.output_keys"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Why did the tomato turn red? Because it saw the salad dressing!'"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_chain.run({\"adjective\":\"corny\"})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the case of one input key, you can input the string directly without specifying the input mapping."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'adjective': 'corny',\n",
" 'text': 'Why did the tomato turn red? Because it saw the salad dressing!'}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# These two are equivalent\n",
"llm_chain.run({\"adjective\":\"corny\"})\n",
"llm_chain.run(\"corny\")\n",
"\n",
"# These two are also equivalent\n",
"llm_chain(\"corny\")\n",
"llm_chain({\"adjective\":\"corny\"})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Tips: You can easily integrate a `Chain` object as a `Tool` in your `Agent` via its `run` method. See an example [here](../agents/tools/custom_tools.ipynb)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Add memory to chains\n",
"\n",
"`Chain` supports taking a `BaseMemory` object as its `memory` argument, allowing `Chain` object to persist data across multiple calls. In other words, it makes `Chain` a stateful object."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'The next four colors of a rainbow are green, blue, indigo, and violet.'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.chains import ConversationChain\n",
"from langchain.memory import ConversationBufferMemory\n",
"\n",
"conversation = ConversationChain(\n",
" llm=chat,\n",
" memory=ConversationBufferMemory()\n",
")\n",
"\n",
"conversation.run(\"Answer briefly. What are the first 3 colors of a rainbow?\")\n",
"# -> The first three colors of a rainbow are red, orange, and yellow.\n",
"conversation.run(\"And the next 4?\")\n",
"# -> The next four colors of a rainbow are green, blue, indigo, and violet."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Essentially, `BaseMemory` defines an interface of how `langchain` stores memory. It allows reading of stored data through `load_memory_variables` method and storing new data through `save_context` method. You can learn more about it in [Memory](../memory/getting_started.ipynb) section."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Debug Chain\n",
"\n",
"It can be hard to debug `Chain` object solely from its output as most `Chain` objects involve a fair amount of input prompt preprocessing and LLM output post-processing. Setting `verbose` to `True` will print out some internal states of the `Chain` object while it is being ran."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new ConversationChain chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mThe following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.\n",
"\n",
"Current conversation:\n",
"\n",
"Human: What is ChatGPT?\n",
"AI:\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'ChatGPT is an AI language model developed by OpenAI. It is based on the GPT-3 architecture and is capable of generating human-like responses to text prompts. ChatGPT has been trained on a massive amount of text data and can understand and respond to a wide range of topics. It is often used for chatbots, virtual assistants, and other conversational AI applications.'"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conversation = ConversationChain(\n",
" llm=chat,\n",
" memory=ConversationBufferMemory(),\n",
" verbose=True\n",
")\n",
"conversation.run(\"What is ChatGPT?\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Combine chains with the `SequentialChain`\n",
"\n",
"The next step after calling a language model is to make a series of calls to a language model. We can do this using sequential chains, which are chains that execute their links in a predefined order. Specifically, we will use the `SimpleSequentialChain`. This is the simplest type of a sequential chain, where each step has a single input/output, and the output of one step is the input to the next.\n",
"\n",
"In this tutorial, our sequential chain will:\n",
"1. First, create a company name for a product. We will reuse the `LLMChain` we'd previously initialized to create this company name.\n",
"2. Then, create a catchphrase for the product. We will initialize a new `LLMChain` to create this catchphrase, as shown below."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"second_prompt = PromptTemplate(\n",
" input_variables=[\"company_name\"],\n",
" template=\"Write a catchphrase for the following company: {company_name}\",\n",
")\n",
"chain_two = LLMChain(llm=llm, prompt=second_prompt)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can combine the two LLMChains, so that we can create a company name and a catchphrase in a single step."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new SimpleSequentialChain chain...\u001b[0m\n",
"\u001b[36;1m\u001b[1;3mRainbow Socks Co.\u001b[0m\n",
"\u001b[33;1m\u001b[1;3m\n",
"\n",
"\"Step into Color with Rainbow Socks!\"\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"\n",
"\"Step into Color with Rainbow Socks!\"\n"
]
}
],
"source": [
"from langchain.chains import SimpleSequentialChain\n",
"overall_chain = SimpleSequentialChain(chains=[chain, chain_two], verbose=True)\n",
"\n",
"# Run the chain specifying only the input variable for the first chain.\n",
"catchphrase = overall_chain.run(\"colorful socks\")\n",
"print(catchphrase)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a custom chain with the `Chain` class\n",
"\n",
"LangChain provides many chains out of the box, but sometimes you may want to create a custom chain for your specific use case. For this example, we will create a custom chain that concatenates the outputs of 2 `LLMChain`s.\n",
"\n",
"In order to create a custom chain:\n",
"1. Start by subclassing the `Chain` class,\n",
"2. Fill out the `input_keys` and `output_keys` properties,\n",
"3. Add the `_call` method that shows how to execute the chain.\n",
"\n",
"These steps are demonstrated in the example below:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import LLMChain\n",
"from langchain.chains.base import Chain\n",
"\n",
"from typing import Dict, List\n",
"\n",
"\n",
"class ConcatenateChain(Chain):\n",
" chain_1: LLMChain\n",
" chain_2: LLMChain\n",
"\n",
" @property\n",
" def input_keys(self) -> List[str]:\n",
" # Union of the input keys of the two chains.\n",
" all_input_vars = set(self.chain_1.input_keys).union(set(self.chain_2.input_keys))\n",
" return list(all_input_vars)\n",
"\n",
" @property\n",
" def output_keys(self) -> List[str]:\n",
" return ['concat_output']\n",
"\n",
" def _call(self, inputs: Dict[str, str]) -> Dict[str, str]:\n",
" output_1 = self.chain_1.run(inputs)\n",
" output_2 = self.chain_2.run(inputs)\n",
" return {'concat_output': output_1 + output_2}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, we can try running the chain that we called.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Concatenated output:\n",
"\n",
"\n",
"Socktastic Colors.\n",
"\n",
"\"Put Some Color in Your Step!\"\n"
]
}
],
"source": [
"prompt_1 = PromptTemplate(\n",
" input_variables=[\"product\"],\n",
" template=\"What is a good name for a company that makes {product}?\",\n",
")\n",
"chain_1 = LLMChain(llm=llm, prompt=prompt_1)\n",
"\n",
"prompt_2 = PromptTemplate(\n",
" input_variables=[\"product\"],\n",
" template=\"What is a good slogan for a company that makes {product}?\",\n",
")\n",
"chain_2 = LLMChain(llm=llm, prompt=prompt_2)\n",
"\n",
"concat_chain = ConcatenateChain(chain_1=chain_1, chain_2=chain_2)\n",
"concat_output = concat_chain.run(\"colorful socks\")\n",
"print(f\"Concatenated output:\\n{concat_output}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"That's it! For more details about how to do cool things with Chains, check out the [how-to guide](how_to_guides.rst) for chains."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"vscode": {
"interpreter": {
"hash": "b1677b440931f40d89ef8be7bf03acb108ce003de0ac9b18e8d43753ea2e7103"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|