Spaces:
Sleeping
Sleeping
File size: 11,342 Bytes
cfd3735 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
{
"cells": [
{
"cell_type": "markdown",
"id": "a5cf6c49",
"metadata": {},
"source": [
"# Router Chains\n",
"\n",
"This notebook demonstrates how to use the `RouterChain` paradigm to create a chain that dynamically selects the next chain to use for a given input. \n",
"\n",
"Router chains are made up of two components:\n",
"\n",
"- The RouterChain itself (responsible for selecting the next chain to call)\n",
"- destination_chains: chains that the router chain can route to\n",
"\n",
"\n",
"In this notebook we will focus on the different types of routing chains. We will show these routing chains used in a `MultiPromptChain` to create a question-answering chain that selects the prompt which is most relevant for a given question, and then answers the question using that prompt."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e8d624d4",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains.router import MultiPromptChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.chains import ConversationChain\n",
"from langchain.chains.llm import LLMChain\n",
"from langchain.prompts import PromptTemplate"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "8d11fa5c",
"metadata": {},
"outputs": [],
"source": [
"physics_template = \"\"\"You are a very smart physics professor. \\\n",
"You are great at answering questions about physics in a concise and easy to understand manner. \\\n",
"When you don't know the answer to a question you admit that you don't know.\n",
"\n",
"Here is a question:\n",
"{input}\"\"\"\n",
"\n",
"\n",
"math_template = \"\"\"You are a very good mathematician. You are great at answering math questions. \\\n",
"You are so good because you are able to break down hard problems into their component parts, \\\n",
"answer the component parts, and then put them together to answer the broader question.\n",
"\n",
"Here is a question:\n",
"{input}\"\"\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "d0b8856e",
"metadata": {},
"outputs": [],
"source": [
"prompt_infos = [\n",
" {\n",
" \"name\": \"physics\", \n",
" \"description\": \"Good for answering questions about physics\", \n",
" \"prompt_template\": physics_template\n",
" },\n",
" {\n",
" \"name\": \"math\", \n",
" \"description\": \"Good for answering math questions\", \n",
" \"prompt_template\": math_template\n",
" }\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "de2dc0f0",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "f27c154a",
"metadata": {},
"outputs": [],
"source": [
"destination_chains = {}\n",
"for p_info in prompt_infos:\n",
" name = p_info[\"name\"]\n",
" prompt_template = p_info[\"prompt_template\"]\n",
" prompt = PromptTemplate(template=prompt_template, input_variables=[\"input\"])\n",
" chain = LLMChain(llm=llm, prompt=prompt)\n",
" destination_chains[name] = chain\n",
"default_chain = ConversationChain(llm=llm, output_key=\"text\")"
]
},
{
"cell_type": "markdown",
"id": "83cea2d5",
"metadata": {},
"source": [
"## LLMRouterChain\n",
"\n",
"This chain uses an LLM to determine how to route things."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "60142895",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains.router.llm_router import LLMRouterChain, RouterOutputParser\n",
"from langchain.chains.router.multi_prompt_prompt import MULTI_PROMPT_ROUTER_TEMPLATE"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "60769f96",
"metadata": {},
"outputs": [],
"source": [
"destinations = [f\"{p['name']}: {p['description']}\" for p in prompt_infos]\n",
"destinations_str = \"\\n\".join(destinations)\n",
"router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format(\n",
" destinations=destinations_str\n",
")\n",
"router_prompt = PromptTemplate(\n",
" template=router_template,\n",
" input_variables=[\"input\"],\n",
" output_parser=RouterOutputParser(),\n",
")\n",
"router_chain = LLMRouterChain.from_llm(llm, router_prompt)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "db679975",
"metadata": {},
"outputs": [],
"source": [
"chain = MultiPromptChain(router_chain=router_chain, destination_chains=destination_chains, default_chain=default_chain, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "90fd594c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new MultiPromptChain chain...\u001b[0m\n",
"physics: {'input': 'What is black body radiation?'}\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"\n",
"Black body radiation is the term used to describe the electromagnetic radiation emitted by a “black body”—an object that absorbs all radiation incident upon it. A black body is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. It does not reflect, emit or transmit energy. This type of radiation is the result of the thermal motion of the body's atoms and molecules, and it is emitted at all wavelengths. The spectrum of radiation emitted is described by Planck's law and is known as the black body spectrum.\n"
]
}
],
"source": [
"print(chain.run(\"What is black body radiation?\"))"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "b8c83765",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new MultiPromptChain chain...\u001b[0m\n",
"math: {'input': 'What is the first prime number greater than 40 such that one plus the prime number is divisible by 3'}\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"?\n",
"\n",
"The answer is 43. One plus 43 is 44 which is divisible by 3.\n"
]
}
],
"source": [
"print(chain.run(\"What is the first prime number greater than 40 such that one plus the prime number is divisible by 3\"))"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "74c6bba7",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new MultiPromptChain chain...\u001b[0m\n",
"None: {'input': 'What is the name of the type of cloud that rains?'}\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
" The type of cloud that rains is called a cumulonimbus cloud. It is a tall and dense cloud that is often accompanied by thunder and lightning.\n"
]
}
],
"source": [
"print(chain.run(\"What is the name of the type of cloud that rins\"))"
]
},
{
"cell_type": "markdown",
"id": "239d4743",
"metadata": {},
"source": [
"## EmbeddingRouterChain\n",
"\n",
"The EmbeddingRouterChain uses embeddings and similarity to route between destination chains."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "55c3ed0e",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains.router.embedding_router import EmbeddingRouterChain\n",
"from langchain.embeddings import CohereEmbeddings\n",
"from langchain.vectorstores import Chroma"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "572a5082",
"metadata": {},
"outputs": [],
"source": [
"names_and_descriptions = [\n",
" (\"physics\", [\"for questions about physics\"]),\n",
" (\"math\", [\"for questions about math\"]),\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "50221efe",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using embedded DuckDB without persistence: data will be transient\n"
]
}
],
"source": [
"router_chain = EmbeddingRouterChain.from_names_and_descriptions(\n",
" names_and_descriptions, Chroma, CohereEmbeddings(), routing_keys=[\"input\"]\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "ff7996a0",
"metadata": {},
"outputs": [],
"source": [
"chain = MultiPromptChain(router_chain=router_chain, destination_chains=destination_chains, default_chain=default_chain, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "99270cc9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new MultiPromptChain chain...\u001b[0m\n",
"physics: {'input': 'What is black body radiation?'}\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"\n",
"Black body radiation is the emission of energy from an idealized physical body (known as a black body) that is in thermal equilibrium with its environment. It is emitted in a characteristic pattern of frequencies known as a black-body spectrum, which depends only on the temperature of the body. The study of black body radiation is an important part of astrophysics and atmospheric physics, as the thermal radiation emitted by stars and planets can often be approximated as black body radiation.\n"
]
}
],
"source": [
"print(chain.run(\"What is black body radiation?\"))"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "b5ce6238",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new MultiPromptChain chain...\u001b[0m\n",
"math: {'input': 'What is the first prime number greater than 40 such that one plus the prime number is divisible by 3'}\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"?\n",
"\n",
"Answer: The first prime number greater than 40 such that one plus the prime number is divisible by 3 is 43.\n"
]
}
],
"source": [
"print(chain.run(\"What is the first prime number greater than 40 such that one plus the prime number is divisible by 3\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "20f3d047",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|