File size: 71,611 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "ca883d49",
   "metadata": {},
   "outputs": [],
   "source": [
    "%load_ext autoreload\n",
    "%autoreload 2"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0ed6aab1",
   "metadata": {
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "# SQL Chain example\n",
    "\n",
    "This example demonstrates the use of the `SQLDatabaseChain` for answering questions over a database."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b2f66479",
   "metadata": {
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "Under the hood, LangChain uses SQLAlchemy to connect to SQL databases. The `SQLDatabaseChain` can therefore be used with any SQL dialect supported by SQLAlchemy, such as MS SQL, MySQL, MariaDB, PostgreSQL, Oracle SQL, and SQLite. Please refer to the SQLAlchemy documentation for more information about requirements for connecting to your database. For example, a connection to MySQL requires an appropriate connector such as PyMySQL. A URI for a MySQL connection might look like: `mysql+pymysql://user:pass@some_mysql_db_address/db_name`\n",
    "\n",
    "This demonstration uses SQLite and the example Chinook database.\n",
    "To set it up, follow the instructions on https://database.guide/2-sample-databases-sqlite/, placing the `.db` file in a notebooks folder at the root of this repository."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6e287fa3",
   "metadata": {},
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "d0e27d88",
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "from langchain import OpenAI, SQLDatabase, SQLDatabaseChain"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "72ede462",
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "db = SQLDatabase.from_uri(\"sqlite:///../../../../notebooks/Chinook.db\")\n",
    "llm = OpenAI(temperature=0, verbose=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3d1e692e",
   "metadata": {},
   "source": [
    "**NOTE:** For data-sensitive projects, you can specify `return_direct=True` in the `SQLDatabaseChain` initialization to directly return the output of the SQL query without any additional formatting. This prevents the LLM from seeing any contents within the database. Note, however, the LLM still has access to the database scheme (i.e. dialect, table and key names) by default."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "a8fc8f23",
   "metadata": {},
   "outputs": [],
   "source": [
    "db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "15ff81df",
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
      "How many employees are there?\n",
      "SQLQuery:"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/workspace/langchain/langchain/sql_database.py:191: SAWarning: Dialect sqlite+pysqlite does *not* support Decimal objects natively, and SQLAlchemy must convert from floating point - rounding errors and other issues may occur. Please consider storing Decimal numbers as strings or integers on this platform for lossless storage.\n",
      "  sample_rows = connection.execute(command)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[32;1m\u001b[1;3mSELECT COUNT(*) FROM \"Employee\";\u001b[0m\n",
      "SQLResult: \u001b[33;1m\u001b[1;3m[(8,)]\u001b[0m\n",
      "Answer:\u001b[32;1m\u001b[1;3mThere are 8 employees.\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'There are 8 employees.'"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "db_chain.run(\"How many employees are there?\")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "bf8a5248",
   "metadata": {},
   "source": [
    "## Use Query Checker\n",
    "Sometimes the Language Model generates invalid SQL with small mistakes that can be self-corrected using the same technique used by the SQL Database Agent to try and fix the SQL using the LLM. You can simply specify this option when creating the chain:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "97e395db",
   "metadata": {},
   "outputs": [],
   "source": [
    "db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True, use_query_checker=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "4afc37db",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
      "How many albums by Aerosmith?\n",
      "SQLQuery:\u001b[32;1m\u001b[1;3mSELECT COUNT(*) FROM Album WHERE ArtistId = 3;\u001b[0m\n",
      "SQLResult: \u001b[33;1m\u001b[1;3m[(1,)]\u001b[0m\n",
      "Answer:\u001b[32;1m\u001b[1;3mThere is 1 album by Aerosmith.\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'There is 1 album by Aerosmith.'"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "db_chain.run(\"How many albums by Aerosmith?\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "aad2cba6",
   "metadata": {},
   "source": [
    "## Customize Prompt\n",
    "You can also customize the prompt that is used. Here is an example prompting it to understand that foobar is the same as the Employee table"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "8ca7bafb",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.prompts.prompt import PromptTemplate\n",
    "\n",
    "_DEFAULT_TEMPLATE = \"\"\"Given an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer.\n",
    "Use the following format:\n",
    "\n",
    "Question: \"Question here\"\n",
    "SQLQuery: \"SQL Query to run\"\n",
    "SQLResult: \"Result of the SQLQuery\"\n",
    "Answer: \"Final answer here\"\n",
    "\n",
    "Only use the following tables:\n",
    "\n",
    "{table_info}\n",
    "\n",
    "If someone asks for the table foobar, they really mean the employee table.\n",
    "\n",
    "Question: {input}\"\"\"\n",
    "PROMPT = PromptTemplate(\n",
    "    input_variables=[\"input\", \"table_info\", \"dialect\"], template=_DEFAULT_TEMPLATE\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "ec47a2bf",
   "metadata": {},
   "outputs": [],
   "source": [
    "db_chain = SQLDatabaseChain.from_llm(llm, db, prompt=PROMPT, verbose=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "ebb0674e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
      "How many employees are there in the foobar table?\n",
      "SQLQuery:\u001b[32;1m\u001b[1;3mSELECT COUNT(*) FROM Employee;\u001b[0m\n",
      "SQLResult: \u001b[33;1m\u001b[1;3m[(8,)]\u001b[0m\n",
      "Answer:\u001b[32;1m\u001b[1;3mThere are 8 employees in the foobar table.\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'There are 8 employees in the foobar table.'"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "db_chain.run(\"How many employees are there in the foobar table?\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "88d8b969",
   "metadata": {},
   "source": [
    "## Return Intermediate Steps\n",
    "\n",
    "You can also return the intermediate steps of the SQLDatabaseChain. This allows you to access the SQL statement that was generated, as well as the result of running that against the SQL Database."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "38559487",
   "metadata": {},
   "outputs": [],
   "source": [
    "db_chain = SQLDatabaseChain.from_llm(llm, db, prompt=PROMPT, verbose=True, use_query_checker=True, return_intermediate_steps=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "78b6af4d",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
      "How many employees are there in the foobar table?\n",
      "SQLQuery:\u001b[32;1m\u001b[1;3mSELECT COUNT(*) FROM Employee;\u001b[0m\n",
      "SQLResult: \u001b[33;1m\u001b[1;3m[(8,)]\u001b[0m\n",
      "Answer:\u001b[32;1m\u001b[1;3mThere are 8 employees in the foobar table.\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "[{'input': 'How many employees are there in the foobar table?\\nSQLQuery:SELECT COUNT(*) FROM Employee;\\nSQLResult: [(8,)]\\nAnswer:',\n",
       "  'top_k': '5',\n",
       "  'dialect': 'sqlite',\n",
       "  'table_info': '\\nCREATE TABLE \"Artist\" (\\n\\t\"ArtistId\" INTEGER NOT NULL, \\n\\t\"Name\" NVARCHAR(120), \\n\\tPRIMARY KEY (\"ArtistId\")\\n)\\n\\n/*\\n3 rows from Artist table:\\nArtistId\\tName\\n1\\tAC/DC\\n2\\tAccept\\n3\\tAerosmith\\n*/\\n\\n\\nCREATE TABLE \"Employee\" (\\n\\t\"EmployeeId\" INTEGER NOT NULL, \\n\\t\"LastName\" NVARCHAR(20) NOT NULL, \\n\\t\"FirstName\" NVARCHAR(20) NOT NULL, \\n\\t\"Title\" NVARCHAR(30), \\n\\t\"ReportsTo\" INTEGER, \\n\\t\"BirthDate\" DATETIME, \\n\\t\"HireDate\" DATETIME, \\n\\t\"Address\" NVARCHAR(70), \\n\\t\"City\" NVARCHAR(40), \\n\\t\"State\" NVARCHAR(40), \\n\\t\"Country\" NVARCHAR(40), \\n\\t\"PostalCode\" NVARCHAR(10), \\n\\t\"Phone\" NVARCHAR(24), \\n\\t\"Fax\" NVARCHAR(24), \\n\\t\"Email\" NVARCHAR(60), \\n\\tPRIMARY KEY (\"EmployeeId\"), \\n\\tFOREIGN KEY(\"ReportsTo\") REFERENCES \"Employee\" (\"EmployeeId\")\\n)\\n\\n/*\\n3 rows from Employee table:\\nEmployeeId\\tLastName\\tFirstName\\tTitle\\tReportsTo\\tBirthDate\\tHireDate\\tAddress\\tCity\\tState\\tCountry\\tPostalCode\\tPhone\\tFax\\tEmail\\n1\\tAdams\\tAndrew\\tGeneral Manager\\tNone\\t1962-02-18 00:00:00\\t2002-08-14 00:00:00\\t11120 Jasper Ave NW\\tEdmonton\\tAB\\tCanada\\tT5K 2N1\\t+1 (780) 428-9482\\t+1 (780) 428-3457\\[email protected]\\n2\\tEdwards\\tNancy\\tSales Manager\\t1\\t1958-12-08 00:00:00\\t2002-05-01 00:00:00\\t825 8 Ave SW\\tCalgary\\tAB\\tCanada\\tT2P 2T3\\t+1 (403) 262-3443\\t+1 (403) 262-3322\\[email protected]\\n3\\tPeacock\\tJane\\tSales Support Agent\\t2\\t1973-08-29 00:00:00\\t2002-04-01 00:00:00\\t1111 6 Ave SW\\tCalgary\\tAB\\tCanada\\tT2P 5M5\\t+1 (403) 262-3443\\t+1 (403) 262-6712\\[email protected]\\n*/\\n\\n\\nCREATE TABLE \"Genre\" (\\n\\t\"GenreId\" INTEGER NOT NULL, \\n\\t\"Name\" NVARCHAR(120), \\n\\tPRIMARY KEY (\"GenreId\")\\n)\\n\\n/*\\n3 rows from Genre table:\\nGenreId\\tName\\n1\\tRock\\n2\\tJazz\\n3\\tMetal\\n*/\\n\\n\\nCREATE TABLE \"MediaType\" (\\n\\t\"MediaTypeId\" INTEGER NOT NULL, \\n\\t\"Name\" NVARCHAR(120), \\n\\tPRIMARY KEY (\"MediaTypeId\")\\n)\\n\\n/*\\n3 rows from MediaType table:\\nMediaTypeId\\tName\\n1\\tMPEG audio file\\n2\\tProtected AAC audio file\\n3\\tProtected MPEG-4 video file\\n*/\\n\\n\\nCREATE TABLE \"Playlist\" (\\n\\t\"PlaylistId\" INTEGER NOT NULL, \\n\\t\"Name\" NVARCHAR(120), \\n\\tPRIMARY KEY (\"PlaylistId\")\\n)\\n\\n/*\\n3 rows from Playlist table:\\nPlaylistId\\tName\\n1\\tMusic\\n2\\tMovies\\n3\\tTV Shows\\n*/\\n\\n\\nCREATE TABLE \"Album\" (\\n\\t\"AlbumId\" INTEGER NOT NULL, \\n\\t\"Title\" NVARCHAR(160) NOT NULL, \\n\\t\"ArtistId\" INTEGER NOT NULL, \\n\\tPRIMARY KEY (\"AlbumId\"), \\n\\tFOREIGN KEY(\"ArtistId\") REFERENCES \"Artist\" (\"ArtistId\")\\n)\\n\\n/*\\n3 rows from Album table:\\nAlbumId\\tTitle\\tArtistId\\n1\\tFor Those About To Rock We Salute You\\t1\\n2\\tBalls to the Wall\\t2\\n3\\tRestless and Wild\\t2\\n*/\\n\\n\\nCREATE TABLE \"Customer\" (\\n\\t\"CustomerId\" INTEGER NOT NULL, \\n\\t\"FirstName\" NVARCHAR(40) NOT NULL, \\n\\t\"LastName\" NVARCHAR(20) NOT NULL, \\n\\t\"Company\" NVARCHAR(80), \\n\\t\"Address\" NVARCHAR(70), \\n\\t\"City\" NVARCHAR(40), \\n\\t\"State\" NVARCHAR(40), \\n\\t\"Country\" NVARCHAR(40), \\n\\t\"PostalCode\" NVARCHAR(10), \\n\\t\"Phone\" NVARCHAR(24), \\n\\t\"Fax\" NVARCHAR(24), \\n\\t\"Email\" NVARCHAR(60) NOT NULL, \\n\\t\"SupportRepId\" INTEGER, \\n\\tPRIMARY KEY (\"CustomerId\"), \\n\\tFOREIGN KEY(\"SupportRepId\") REFERENCES \"Employee\" (\"EmployeeId\")\\n)\\n\\n/*\\n3 rows from Customer table:\\nCustomerId\\tFirstName\\tLastName\\tCompany\\tAddress\\tCity\\tState\\tCountry\\tPostalCode\\tPhone\\tFax\\tEmail\\tSupportRepId\\n1\\tLuís\\tGonçalves\\tEmbraer - Empresa Brasileira de Aeronáutica S.A.\\tAv. Brigadeiro Faria Lima, 2170\\tSão José dos Campos\\tSP\\tBrazil\\t12227-000\\t+55 (12) 3923-5555\\t+55 (12) 3923-5566\\[email protected]\\t3\\n2\\tLeonie\\tKöhler\\tNone\\tTheodor-Heuss-Straße 34\\tStuttgart\\tNone\\tGermany\\t70174\\t+49 0711 2842222\\tNone\\[email protected]\\t5\\n3\\tFrançois\\tTremblay\\tNone\\t1498 rue Bélanger\\tMontréal\\tQC\\tCanada\\tH2G 1A7\\t+1 (514) 721-4711\\tNone\\[email protected]\\t3\\n*/\\n\\n\\nCREATE TABLE \"Invoice\" (\\n\\t\"InvoiceId\" INTEGER NOT NULL, \\n\\t\"CustomerId\" INTEGER NOT NULL, \\n\\t\"InvoiceDate\" DATETIME NOT NULL, \\n\\t\"BillingAddress\" NVARCHAR(70), \\n\\t\"BillingCity\" NVARCHAR(40), \\n\\t\"BillingState\" NVARCHAR(40), \\n\\t\"BillingCountry\" NVARCHAR(40), \\n\\t\"BillingPostalCode\" NVARCHAR(10), \\n\\t\"Total\" NUMERIC(10, 2) NOT NULL, \\n\\tPRIMARY KEY (\"InvoiceId\"), \\n\\tFOREIGN KEY(\"CustomerId\") REFERENCES \"Customer\" (\"CustomerId\")\\n)\\n\\n/*\\n3 rows from Invoice table:\\nInvoiceId\\tCustomerId\\tInvoiceDate\\tBillingAddress\\tBillingCity\\tBillingState\\tBillingCountry\\tBillingPostalCode\\tTotal\\n1\\t2\\t2009-01-01 00:00:00\\tTheodor-Heuss-Straße 34\\tStuttgart\\tNone\\tGermany\\t70174\\t1.98\\n2\\t4\\t2009-01-02 00:00:00\\tUllevålsveien 14\\tOslo\\tNone\\tNorway\\t0171\\t3.96\\n3\\t8\\t2009-01-03 00:00:00\\tGrétrystraat 63\\tBrussels\\tNone\\tBelgium\\t1000\\t5.94\\n*/\\n\\n\\nCREATE TABLE \"Track\" (\\n\\t\"TrackId\" INTEGER NOT NULL, \\n\\t\"Name\" NVARCHAR(200) NOT NULL, \\n\\t\"AlbumId\" INTEGER, \\n\\t\"MediaTypeId\" INTEGER NOT NULL, \\n\\t\"GenreId\" INTEGER, \\n\\t\"Composer\" NVARCHAR(220), \\n\\t\"Milliseconds\" INTEGER NOT NULL, \\n\\t\"Bytes\" INTEGER, \\n\\t\"UnitPrice\" NUMERIC(10, 2) NOT NULL, \\n\\tPRIMARY KEY (\"TrackId\"), \\n\\tFOREIGN KEY(\"MediaTypeId\") REFERENCES \"MediaType\" (\"MediaTypeId\"), \\n\\tFOREIGN KEY(\"GenreId\") REFERENCES \"Genre\" (\"GenreId\"), \\n\\tFOREIGN KEY(\"AlbumId\") REFERENCES \"Album\" (\"AlbumId\")\\n)\\n\\n/*\\n3 rows from Track table:\\nTrackId\\tName\\tAlbumId\\tMediaTypeId\\tGenreId\\tComposer\\tMilliseconds\\tBytes\\tUnitPrice\\n1\\tFor Those About To Rock (We Salute You)\\t1\\t1\\t1\\tAngus Young, Malcolm Young, Brian Johnson\\t343719\\t11170334\\t0.99\\n2\\tBalls to the Wall\\t2\\t2\\t1\\tNone\\t342562\\t5510424\\t0.99\\n3\\tFast As a Shark\\t3\\t2\\t1\\tF. Baltes, S. Kaufman, U. Dirkscneider & W. Hoffman\\t230619\\t3990994\\t0.99\\n*/\\n\\n\\nCREATE TABLE \"InvoiceLine\" (\\n\\t\"InvoiceLineId\" INTEGER NOT NULL, \\n\\t\"InvoiceId\" INTEGER NOT NULL, \\n\\t\"TrackId\" INTEGER NOT NULL, \\n\\t\"UnitPrice\" NUMERIC(10, 2) NOT NULL, \\n\\t\"Quantity\" INTEGER NOT NULL, \\n\\tPRIMARY KEY (\"InvoiceLineId\"), \\n\\tFOREIGN KEY(\"TrackId\") REFERENCES \"Track\" (\"TrackId\"), \\n\\tFOREIGN KEY(\"InvoiceId\") REFERENCES \"Invoice\" (\"InvoiceId\")\\n)\\n\\n/*\\n3 rows from InvoiceLine table:\\nInvoiceLineId\\tInvoiceId\\tTrackId\\tUnitPrice\\tQuantity\\n1\\t1\\t2\\t0.99\\t1\\n2\\t1\\t4\\t0.99\\t1\\n3\\t2\\t6\\t0.99\\t1\\n*/\\n\\n\\nCREATE TABLE \"PlaylistTrack\" (\\n\\t\"PlaylistId\" INTEGER NOT NULL, \\n\\t\"TrackId\" INTEGER NOT NULL, \\n\\tPRIMARY KEY (\"PlaylistId\", \"TrackId\"), \\n\\tFOREIGN KEY(\"TrackId\") REFERENCES \"Track\" (\"TrackId\"), \\n\\tFOREIGN KEY(\"PlaylistId\") REFERENCES \"Playlist\" (\"PlaylistId\")\\n)\\n\\n/*\\n3 rows from PlaylistTrack table:\\nPlaylistId\\tTrackId\\n1\\t3402\\n1\\t3389\\n1\\t3390\\n*/',\n",
       "  'stop': ['\\nSQLResult:']},\n",
       " 'SELECT COUNT(*) FROM Employee;',\n",
       " {'query': 'SELECT COUNT(*) FROM Employee;', 'dialect': 'sqlite'},\n",
       " 'SELECT COUNT(*) FROM Employee;',\n",
       " '[(8,)]']"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "result = db_chain(\"How many employees are there in the foobar table?\")\n",
    "result[\"intermediate_steps\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b408f800",
   "metadata": {},
   "source": [
    "## Choosing how to limit the number of rows returned\n",
    "If you are querying for several rows of a table you can select the maximum number of results you want to get by using the 'top_k' parameter (default is 10). This is useful for avoiding query results that exceed the prompt max length or consume tokens unnecessarily."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "6adaa799",
   "metadata": {},
   "outputs": [],
   "source": [
    "db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True, use_query_checker=True, top_k=3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "edfc8a8e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
      "What are some example tracks by composer Johann Sebastian Bach?\n",
      "SQLQuery:\u001b[32;1m\u001b[1;3mSELECT Name FROM Track WHERE Composer = 'Johann Sebastian Bach' LIMIT 3\u001b[0m\n",
      "SQLResult: \u001b[33;1m\u001b[1;3m[('Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace',), ('Aria Mit 30 Veränderungen, BWV 988 \"Goldberg Variations\": Aria',), ('Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude',)]\u001b[0m\n",
      "Answer:\u001b[32;1m\u001b[1;3mExamples of tracks by Johann Sebastian Bach are Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace, Aria Mit 30 Veränderungen, BWV 988 \"Goldberg Variations\": Aria, and Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude.\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'Examples of tracks by Johann Sebastian Bach are Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace, Aria Mit 30 Veränderungen, BWV 988 \"Goldberg Variations\": Aria, and Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude.'"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "db_chain.run(\"What are some example tracks by composer Johann Sebastian Bach?\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bcc5e936",
   "metadata": {},
   "source": [
    "## Adding example rows from each table\n",
    "Sometimes, the format of the data is not obvious and it is optimal to include a sample of rows from the tables in the prompt to allow the LLM to understand the data before providing a final query. Here we will use this feature to let the LLM know that artists are saved with their full names by providing two rows from the `Track` table."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "9a22ee47",
   "metadata": {},
   "outputs": [],
   "source": [
    "db = SQLDatabase.from_uri(\n",
    "    \"sqlite:///../../../../notebooks/Chinook.db\",\n",
    "    include_tables=['Track'], # we include only one table to save tokens in the prompt :)\n",
    "    sample_rows_in_table_info=2)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "952c0b4d",
   "metadata": {},
   "source": [
    "The sample rows are added to the prompt after each corresponding table's column information:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "9de86267",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "CREATE TABLE \"Track\" (\n",
      "\t\"TrackId\" INTEGER NOT NULL, \n",
      "\t\"Name\" NVARCHAR(200) NOT NULL, \n",
      "\t\"AlbumId\" INTEGER, \n",
      "\t\"MediaTypeId\" INTEGER NOT NULL, \n",
      "\t\"GenreId\" INTEGER, \n",
      "\t\"Composer\" NVARCHAR(220), \n",
      "\t\"Milliseconds\" INTEGER NOT NULL, \n",
      "\t\"Bytes\" INTEGER, \n",
      "\t\"UnitPrice\" NUMERIC(10, 2) NOT NULL, \n",
      "\tPRIMARY KEY (\"TrackId\"), \n",
      "\tFOREIGN KEY(\"MediaTypeId\") REFERENCES \"MediaType\" (\"MediaTypeId\"), \n",
      "\tFOREIGN KEY(\"GenreId\") REFERENCES \"Genre\" (\"GenreId\"), \n",
      "\tFOREIGN KEY(\"AlbumId\") REFERENCES \"Album\" (\"AlbumId\")\n",
      ")\n",
      "\n",
      "/*\n",
      "2 rows from Track table:\n",
      "TrackId\tName\tAlbumId\tMediaTypeId\tGenreId\tComposer\tMilliseconds\tBytes\tUnitPrice\n",
      "1\tFor Those About To Rock (We Salute You)\t1\t1\t1\tAngus Young, Malcolm Young, Brian Johnson\t343719\t11170334\t0.99\n",
      "2\tBalls to the Wall\t2\t2\t1\tNone\t342562\t5510424\t0.99\n",
      "*/\n"
     ]
    }
   ],
   "source": [
    "print(db.table_info)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "bcb7a489",
   "metadata": {},
   "outputs": [],
   "source": [
    "db_chain = SQLDatabaseChain.from_llm(llm, db, use_query_checker=True, verbose=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "81e05d82",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
      "What are some example tracks by Bach?\n",
      "SQLQuery:\u001b[32;1m\u001b[1;3mSELECT \"Name\", \"Composer\" FROM \"Track\" WHERE \"Composer\" LIKE '%Bach%' LIMIT 5\u001b[0m\n",
      "SQLResult: \u001b[33;1m\u001b[1;3m[('American Woman', 'B. Cummings/G. Peterson/M.J. Kale/R. Bachman'), ('Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace', 'Johann Sebastian Bach'), ('Aria Mit 30 Veränderungen, BWV 988 \"Goldberg Variations\": Aria', 'Johann Sebastian Bach'), ('Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude', 'Johann Sebastian Bach'), ('Toccata and Fugue in D Minor, BWV 565: I. Toccata', 'Johann Sebastian Bach')]\u001b[0m\n",
      "Answer:\u001b[32;1m\u001b[1;3mTracks by Bach include 'American Woman', 'Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace', 'Aria Mit 30 Veränderungen, BWV 988 \"Goldberg Variations\": Aria', 'Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude', and 'Toccata and Fugue in D Minor, BWV 565: I. Toccata'.\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'Tracks by Bach include \\'American Woman\\', \\'Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace\\', \\'Aria Mit 30 Veränderungen, BWV 988 \"Goldberg Variations\": Aria\\', \\'Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude\\', and \\'Toccata and Fugue in D Minor, BWV 565: I. Toccata\\'.'"
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "db_chain.run(\"What are some example tracks by Bach?\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ef94e948",
   "metadata": {},
   "source": [
    "### Custom Table Info\n",
    "In some cases, it can be useful to provide custom table information instead of using the automatically generated table definitions and the first `sample_rows_in_table_info` sample rows. For example, if you know that the first few rows of a table are uninformative, it could help to manually provide example rows that are more diverse or provide more information to the model. It is also possible to limit the columns that will be visible to the model if there are unnecessary columns. \n",
    "\n",
    "This information can be provided as a dictionary with table names as the keys and table information as the values. For example, let's provide a custom definition and sample rows for the Track table with only a few columns:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "2ad33ab1",
   "metadata": {},
   "outputs": [],
   "source": [
    "custom_table_info = {\n",
    "    \"Track\": \"\"\"CREATE TABLE Track (\n",
    "\t\"TrackId\" INTEGER NOT NULL, \n",
    "\t\"Name\" NVARCHAR(200) NOT NULL,\n",
    "\t\"Composer\" NVARCHAR(220),\n",
    "\tPRIMARY KEY (\"TrackId\")\n",
    ")\n",
    "/*\n",
    "3 rows from Track table:\n",
    "TrackId\tName\tComposer\n",
    "1\tFor Those About To Rock (We Salute You)\tAngus Young, Malcolm Young, Brian Johnson\n",
    "2\tBalls to the Wall\tNone\n",
    "3\tMy favorite song ever\tThe coolest composer of all time\n",
    "*/\"\"\"\n",
    "}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "db144352",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "CREATE TABLE \"Playlist\" (\n",
      "\t\"PlaylistId\" INTEGER NOT NULL, \n",
      "\t\"Name\" NVARCHAR(120), \n",
      "\tPRIMARY KEY (\"PlaylistId\")\n",
      ")\n",
      "\n",
      "/*\n",
      "2 rows from Playlist table:\n",
      "PlaylistId\tName\n",
      "1\tMusic\n",
      "2\tMovies\n",
      "*/\n",
      "\n",
      "CREATE TABLE Track (\n",
      "\t\"TrackId\" INTEGER NOT NULL, \n",
      "\t\"Name\" NVARCHAR(200) NOT NULL,\n",
      "\t\"Composer\" NVARCHAR(220),\n",
      "\tPRIMARY KEY (\"TrackId\")\n",
      ")\n",
      "/*\n",
      "3 rows from Track table:\n",
      "TrackId\tName\tComposer\n",
      "1\tFor Those About To Rock (We Salute You)\tAngus Young, Malcolm Young, Brian Johnson\n",
      "2\tBalls to the Wall\tNone\n",
      "3\tMy favorite song ever\tThe coolest composer of all time\n",
      "*/\n"
     ]
    }
   ],
   "source": [
    "db = SQLDatabase.from_uri(\n",
    "    \"sqlite:///../../../../notebooks/Chinook.db\",\n",
    "    include_tables=['Track', 'Playlist'],\n",
    "    sample_rows_in_table_info=2,\n",
    "    custom_table_info=custom_table_info)\n",
    "\n",
    "print(db.table_info)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5fc6f507",
   "metadata": {},
   "source": [
    "Note how our custom table definition and sample rows for `Track` overrides the `sample_rows_in_table_info` parameter. Tables that are not overridden by `custom_table_info`, in this example `Playlist`, will have their table info gathered automatically as usual."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "id": "dfbda4e6",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
      "What are some example tracks by Bach?\n",
      "SQLQuery:\u001b[32;1m\u001b[1;3mSELECT \"Name\" FROM Track WHERE \"Composer\" LIKE '%Bach%' LIMIT 5;\u001b[0m\n",
      "SQLResult: \u001b[33;1m\u001b[1;3m[('American Woman',), ('Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace',), ('Aria Mit 30 Veränderungen, BWV 988 \"Goldberg Variations\": Aria',), ('Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude',), ('Toccata and Fugue in D Minor, BWV 565: I. Toccata',)]\u001b[0m\n",
      "Answer:text='You are a SQLite expert. Given an input question, first create a syntactically correct SQLite query to run, then look at the results of the query and return the answer to the input question.\\nUnless the user specifies in the question a specific number of examples to obtain, query for at most 5 results using the LIMIT clause as per SQLite. You can order the results to return the most informative data in the database.\\nNever query for all columns from a table. You must query only the columns that are needed to answer the question. Wrap each column name in double quotes (\") to denote them as delimited identifiers.\\nPay attention to use only the column names you can see in the tables below. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table.\\n\\nUse the following format:\\n\\nQuestion: \"Question here\"\\nSQLQuery: \"SQL Query to run\"\\nSQLResult: \"Result of the SQLQuery\"\\nAnswer: \"Final answer here\"\\n\\nOnly use the following tables:\\n\\nCREATE TABLE \"Playlist\" (\\n\\t\"PlaylistId\" INTEGER NOT NULL, \\n\\t\"Name\" NVARCHAR(120), \\n\\tPRIMARY KEY (\"PlaylistId\")\\n)\\n\\n/*\\n2 rows from Playlist table:\\nPlaylistId\\tName\\n1\\tMusic\\n2\\tMovies\\n*/\\n\\nCREATE TABLE Track (\\n\\t\"TrackId\" INTEGER NOT NULL, \\n\\t\"Name\" NVARCHAR(200) NOT NULL,\\n\\t\"Composer\" NVARCHAR(220),\\n\\tPRIMARY KEY (\"TrackId\")\\n)\\n/*\\n3 rows from Track table:\\nTrackId\\tName\\tComposer\\n1\\tFor Those About To Rock (We Salute You)\\tAngus Young, Malcolm Young, Brian Johnson\\n2\\tBalls to the Wall\\tNone\\n3\\tMy favorite song ever\\tThe coolest composer of all time\\n*/\\n\\nQuestion: What are some example tracks by Bach?\\nSQLQuery:SELECT \"Name\" FROM Track WHERE \"Composer\" LIKE \\'%Bach%\\' LIMIT 5;\\nSQLResult: [(\\'American Woman\\',), (\\'Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace\\',), (\\'Aria Mit 30 Veränderungen, BWV 988 \"Goldberg Variations\": Aria\\',), (\\'Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude\\',), (\\'Toccata and Fugue in D Minor, BWV 565: I. Toccata\\',)]\\nAnswer:'\n",
      "You are a SQLite expert. Given an input question, first create a syntactically correct SQLite query to run, then look at the results of the query and return the answer to the input question.\n",
      "Unless the user specifies in the question a specific number of examples to obtain, query for at most 5 results using the LIMIT clause as per SQLite. You can order the results to return the most informative data in the database.\n",
      "Never query for all columns from a table. You must query only the columns that are needed to answer the question. Wrap each column name in double quotes (\") to denote them as delimited identifiers.\n",
      "Pay attention to use only the column names you can see in the tables below. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table.\n",
      "\n",
      "Use the following format:\n",
      "\n",
      "Question: \"Question here\"\n",
      "SQLQuery: \"SQL Query to run\"\n",
      "SQLResult: \"Result of the SQLQuery\"\n",
      "Answer: \"Final answer here\"\n",
      "\n",
      "Only use the following tables:\n",
      "\n",
      "CREATE TABLE \"Playlist\" (\n",
      "\t\"PlaylistId\" INTEGER NOT NULL, \n",
      "\t\"Name\" NVARCHAR(120), \n",
      "\tPRIMARY KEY (\"PlaylistId\")\n",
      ")\n",
      "\n",
      "/*\n",
      "2 rows from Playlist table:\n",
      "PlaylistId\tName\n",
      "1\tMusic\n",
      "2\tMovies\n",
      "*/\n",
      "\n",
      "CREATE TABLE Track (\n",
      "\t\"TrackId\" INTEGER NOT NULL, \n",
      "\t\"Name\" NVARCHAR(200) NOT NULL,\n",
      "\t\"Composer\" NVARCHAR(220),\n",
      "\tPRIMARY KEY (\"TrackId\")\n",
      ")\n",
      "/*\n",
      "3 rows from Track table:\n",
      "TrackId\tName\tComposer\n",
      "1\tFor Those About To Rock (We Salute You)\tAngus Young, Malcolm Young, Brian Johnson\n",
      "2\tBalls to the Wall\tNone\n",
      "3\tMy favorite song ever\tThe coolest composer of all time\n",
      "*/\n",
      "\n",
      "Question: What are some example tracks by Bach?\n",
      "SQLQuery:SELECT \"Name\" FROM Track WHERE \"Composer\" LIKE '%Bach%' LIMIT 5;\n",
      "SQLResult: [('American Woman',), ('Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace',), ('Aria Mit 30 Veränderungen, BWV 988 \"Goldberg Variations\": Aria',), ('Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude',), ('Toccata and Fugue in D Minor, BWV 565: I. Toccata',)]\n",
      "Answer:\n",
      "{'input': 'What are some example tracks by Bach?\\nSQLQuery:SELECT \"Name\" FROM Track WHERE \"Composer\" LIKE \\'%Bach%\\' LIMIT 5;\\nSQLResult: [(\\'American Woman\\',), (\\'Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace\\',), (\\'Aria Mit 30 Veränderungen, BWV 988 \"Goldberg Variations\": Aria\\',), (\\'Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude\\',), (\\'Toccata and Fugue in D Minor, BWV 565: I. Toccata\\',)]\\nAnswer:', 'top_k': '5', 'dialect': 'sqlite', 'table_info': '\\nCREATE TABLE \"Playlist\" (\\n\\t\"PlaylistId\" INTEGER NOT NULL, \\n\\t\"Name\" NVARCHAR(120), \\n\\tPRIMARY KEY (\"PlaylistId\")\\n)\\n\\n/*\\n2 rows from Playlist table:\\nPlaylistId\\tName\\n1\\tMusic\\n2\\tMovies\\n*/\\n\\nCREATE TABLE Track (\\n\\t\"TrackId\" INTEGER NOT NULL, \\n\\t\"Name\" NVARCHAR(200) NOT NULL,\\n\\t\"Composer\" NVARCHAR(220),\\n\\tPRIMARY KEY (\"TrackId\")\\n)\\n/*\\n3 rows from Track table:\\nTrackId\\tName\\tComposer\\n1\\tFor Those About To Rock (We Salute You)\\tAngus Young, Malcolm Young, Brian Johnson\\n2\\tBalls to the Wall\\tNone\\n3\\tMy favorite song ever\\tThe coolest composer of all time\\n*/', 'stop': ['\\nSQLResult:']}\n",
      "\u001b[32;1m\u001b[1;3mExamples of tracks by Bach include \"American Woman\", \"Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace\", \"Aria Mit 30 Veränderungen, BWV 988 'Goldberg Variations': Aria\", \"Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude\", and \"Toccata and Fugue in D Minor, BWV 565: I. Toccata\".\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'Examples of tracks by Bach include \"American Woman\", \"Concerto for 2 Violins in D Minor, BWV 1043: I. Vivace\", \"Aria Mit 30 Veränderungen, BWV 988 \\'Goldberg Variations\\': Aria\", \"Suite for Solo Cello No. 1 in G Major, BWV 1007: I. Prélude\", and \"Toccata and Fugue in D Minor, BWV 565: I. Toccata\".'"
      ]
     },
     "execution_count": 24,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)\n",
    "db_chain.run(\"What are some example tracks by Bach?\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c12ae15a",
   "metadata": {},
   "source": [
    "## SQLDatabaseSequentialChain\n",
    "\n",
    "Chain for querying SQL database that is a sequential chain.\n",
    "\n",
    "The chain is as follows:\n",
    "\n",
    "    1. Based on the query, determine which tables to use.\n",
    "    2. Based on those tables, call the normal SQL database chain.\n",
    "\n",
    "This is useful in cases where the number of tables in the database is large."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "e59a4740",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.chains import SQLDatabaseSequentialChain\n",
    "db = SQLDatabase.from_uri(\"sqlite:///../../../../notebooks/Chinook.db\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "id": "58bb49b6",
   "metadata": {},
   "outputs": [],
   "source": [
    "chain = SQLDatabaseSequentialChain.from_llm(llm, db, verbose=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "id": "95017b1a",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new SQLDatabaseSequentialChain chain...\u001b[0m\n",
      "Table names to use:\n",
      "\u001b[33;1m\u001b[1;3m['Employee', 'Customer']\u001b[0m\n",
      "\n",
      "\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
      "How many employees are also customers?\n",
      "SQLQuery:\u001b[32;1m\u001b[1;3mSELECT COUNT(*) FROM Employee e INNER JOIN Customer c ON e.EmployeeId = c.SupportRepId;\u001b[0m\n",
      "SQLResult: \u001b[33;1m\u001b[1;3m[(59,)]\u001b[0m\n",
      "Answer:\u001b[32;1m\u001b[1;3m59 employees are also customers.\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'59 employees are also customers.'"
      ]
     },
     "execution_count": 27,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "chain.run(\"How many employees are also customers?\")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "5eb39db6",
   "metadata": {},
   "source": [
    "## Using Local Language Models\n"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "6ab11cb9",
   "metadata": {},
   "source": [
    "Sometimes you may not have the luxury of using OpenAI or other service-hosted large language model. You can, ofcourse, try to use the `SQLDatabaseChain` with a local model, but will quickly realize that most models you can run locally even with a large GPU struggle to generate the right output."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "id": "dd21d9b4",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/workspace/langchain/.venv/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n",
      "Loading checkpoint shards: 100%|██████████| 8/8 [00:32<00:00,  4.11s/it]\n"
     ]
    }
   ],
   "source": [
    "import logging\n",
    "import torch\n",
    "from transformers import AutoTokenizer, GPT2TokenizerFast, pipeline, AutoModelForSeq2SeqLM, AutoModelForCausalLM\n",
    "from langchain import HuggingFacePipeline\n",
    "\n",
    "# Note: This model requires a large GPU, e.g. an 80GB A100. See documentation for other ways to run private non-OpenAI models.\n",
    "model_id = \"google/flan-ul2\"\n",
    "model = AutoModelForSeq2SeqLM.from_pretrained(model_id, temperature=0)\n",
    "\n",
    "device_id = -1  # default to no-GPU, but use GPU and half precision mode if available\n",
    "if torch.cuda.is_available():\n",
    "    device_id = 0\n",
    "    try:\n",
    "        model = model.half()\n",
    "    except RuntimeError as exc:\n",
    "        logging.warn(f\"Could not run model in half precision mode: {str(exc)}\")\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
    "pipe = pipeline(task=\"text2text-generation\", model=model, tokenizer=tokenizer, max_length=1024, device=device_id)\n",
    "\n",
    "local_llm = HuggingFacePipeline(pipeline=pipe)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "id": "f89fd8d0",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain import SQLDatabase, SQLDatabaseChain\n",
    "\n",
    "db = SQLDatabase.from_uri(\"sqlite:///../../../../notebooks/Chinook.db\", include_tables=['Customer'])\n",
    "local_chain = SQLDatabaseChain.from_llm(local_llm, db, verbose=True, return_intermediate_steps=True, use_query_checker=True)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "5a339eed",
   "metadata": {},
   "source": [
    "This model should work for very simple SQL queries, as long as you use the query checker as specified above, e.g.:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "id": "49a43200",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
      "How many customers are there?\n",
      "SQLQuery:"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/workspace/langchain/.venv/lib/python3.9/site-packages/transformers/pipelines/base.py:1070: UserWarning: You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a dataset\n",
      "  warnings.warn(\n",
      "/workspace/langchain/.venv/lib/python3.9/site-packages/transformers/pipelines/base.py:1070: UserWarning: You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a dataset\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[32;1m\u001b[1;3mSELECT count(*) FROM Customer\u001b[0m\n",
      "SQLResult: \u001b[33;1m\u001b[1;3m[(59,)]\u001b[0m\n",
      "Answer:"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/workspace/langchain/.venv/lib/python3.9/site-packages/transformers/pipelines/base.py:1070: UserWarning: You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a dataset\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[32;1m\u001b[1;3m[59]\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "{'query': 'How many customers are there?',\n",
       " 'result': '[59]',\n",
       " 'intermediate_steps': [{'input': 'How many customers are there?\\nSQLQuery:SELECT count(*) FROM Customer\\nSQLResult: [(59,)]\\nAnswer:',\n",
       "   'top_k': '5',\n",
       "   'dialect': 'sqlite',\n",
       "   'table_info': '\\nCREATE TABLE \"Customer\" (\\n\\t\"CustomerId\" INTEGER NOT NULL, \\n\\t\"FirstName\" NVARCHAR(40) NOT NULL, \\n\\t\"LastName\" NVARCHAR(20) NOT NULL, \\n\\t\"Company\" NVARCHAR(80), \\n\\t\"Address\" NVARCHAR(70), \\n\\t\"City\" NVARCHAR(40), \\n\\t\"State\" NVARCHAR(40), \\n\\t\"Country\" NVARCHAR(40), \\n\\t\"PostalCode\" NVARCHAR(10), \\n\\t\"Phone\" NVARCHAR(24), \\n\\t\"Fax\" NVARCHAR(24), \\n\\t\"Email\" NVARCHAR(60) NOT NULL, \\n\\t\"SupportRepId\" INTEGER, \\n\\tPRIMARY KEY (\"CustomerId\"), \\n\\tFOREIGN KEY(\"SupportRepId\") REFERENCES \"Employee\" (\"EmployeeId\")\\n)\\n\\n/*\\n3 rows from Customer table:\\nCustomerId\\tFirstName\\tLastName\\tCompany\\tAddress\\tCity\\tState\\tCountry\\tPostalCode\\tPhone\\tFax\\tEmail\\tSupportRepId\\n1\\tLuís\\tGonçalves\\tEmbraer - Empresa Brasileira de Aeronáutica S.A.\\tAv. Brigadeiro Faria Lima, 2170\\tSão José dos Campos\\tSP\\tBrazil\\t12227-000\\t+55 (12) 3923-5555\\t+55 (12) 3923-5566\\[email protected]\\t3\\n2\\tLeonie\\tKöhler\\tNone\\tTheodor-Heuss-Straße 34\\tStuttgart\\tNone\\tGermany\\t70174\\t+49 0711 2842222\\tNone\\[email protected]\\t5\\n3\\tFrançois\\tTremblay\\tNone\\t1498 rue Bélanger\\tMontréal\\tQC\\tCanada\\tH2G 1A7\\t+1 (514) 721-4711\\tNone\\[email protected]\\t3\\n*/',\n",
       "   'stop': ['\\nSQLResult:']},\n",
       "  'SELECT count(*) FROM Customer',\n",
       "  {'query': 'SELECT count(*) FROM Customer', 'dialect': 'sqlite'},\n",
       "  'SELECT count(*) FROM Customer',\n",
       "  '[(59,)]']}"
      ]
     },
     "execution_count": 46,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "local_chain(\"How many customers are there?\")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "6858f758",
   "metadata": {},
   "source": [
    "Even this relatively large model will most likely fail to generate more complicated SQL by itself. However, you can log its inputs and outputs so that you can hand-correct them and use the corrected examples for few shot prompt examples later. In practice, you could log any executions of your chain that raise exceptions (as shown in the example below) or get direct user feedback in cases where the results are incorrect (but did not raise an exception)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "id": "1abf2c91",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
      "To disable this warning, you can either:\n",
      "\t- Avoid using `tokenizers` before the fork if possible\n",
      "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "11842.36s - pydevd: Sending message related to process being replaced timed-out after 5 seconds\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: pyyaml in /workspace/langchain/.venv/lib/python3.9/site-packages (6.0)\n",
      "Requirement already satisfied: chromadb in /workspace/langchain/.venv/lib/python3.9/site-packages (0.3.21)\n",
      "Requirement already satisfied: pandas>=1.3 in /workspace/langchain/.venv/lib/python3.9/site-packages (from chromadb) (2.0.1)\n",
      "Requirement already satisfied: requests>=2.28 in /workspace/langchain/.venv/lib/python3.9/site-packages (from chromadb) (2.28.2)\n",
      "Requirement already satisfied: pydantic>=1.9 in /workspace/langchain/.venv/lib/python3.9/site-packages (from chromadb) (1.10.7)\n",
      "Requirement already satisfied: hnswlib>=0.7 in /workspace/langchain/.venv/lib/python3.9/site-packages (from chromadb) (0.7.0)\n",
      "Requirement already satisfied: clickhouse-connect>=0.5.7 in /workspace/langchain/.venv/lib/python3.9/site-packages (from chromadb) (0.5.20)\n",
      "Requirement already satisfied: sentence-transformers>=2.2.2 in /workspace/langchain/.venv/lib/python3.9/site-packages (from chromadb) (2.2.2)\n",
      "Requirement already satisfied: duckdb>=0.7.1 in /workspace/langchain/.venv/lib/python3.9/site-packages (from chromadb) (0.7.1)\n",
      "Requirement already satisfied: fastapi>=0.85.1 in /workspace/langchain/.venv/lib/python3.9/site-packages (from chromadb) (0.95.1)\n",
      "Requirement already satisfied: uvicorn[standard]>=0.18.3 in /workspace/langchain/.venv/lib/python3.9/site-packages (from chromadb) (0.21.1)\n",
      "Requirement already satisfied: numpy>=1.21.6 in /workspace/langchain/.venv/lib/python3.9/site-packages (from chromadb) (1.24.3)\n",
      "Requirement already satisfied: posthog>=2.4.0 in /workspace/langchain/.venv/lib/python3.9/site-packages (from chromadb) (3.0.1)\n",
      "Requirement already satisfied: certifi in /workspace/langchain/.venv/lib/python3.9/site-packages (from clickhouse-connect>=0.5.7->chromadb) (2022.12.7)\n",
      "Requirement already satisfied: urllib3>=1.26 in /workspace/langchain/.venv/lib/python3.9/site-packages (from clickhouse-connect>=0.5.7->chromadb) (1.26.15)\n",
      "Requirement already satisfied: pytz in /workspace/langchain/.venv/lib/python3.9/site-packages (from clickhouse-connect>=0.5.7->chromadb) (2023.3)\n",
      "Requirement already satisfied: zstandard in /workspace/langchain/.venv/lib/python3.9/site-packages (from clickhouse-connect>=0.5.7->chromadb) (0.21.0)\n",
      "Requirement already satisfied: lz4 in /workspace/langchain/.venv/lib/python3.9/site-packages (from clickhouse-connect>=0.5.7->chromadb) (4.3.2)\n",
      "Requirement already satisfied: starlette<0.27.0,>=0.26.1 in /workspace/langchain/.venv/lib/python3.9/site-packages (from fastapi>=0.85.1->chromadb) (0.26.1)\n",
      "Requirement already satisfied: python-dateutil>=2.8.2 in /workspace/langchain/.venv/lib/python3.9/site-packages (from pandas>=1.3->chromadb) (2.8.2)\n",
      "Requirement already satisfied: tzdata>=2022.1 in /workspace/langchain/.venv/lib/python3.9/site-packages (from pandas>=1.3->chromadb) (2023.3)\n",
      "Requirement already satisfied: six>=1.5 in /workspace/langchain/.venv/lib/python3.9/site-packages (from posthog>=2.4.0->chromadb) (1.16.0)\n",
      "Requirement already satisfied: monotonic>=1.5 in /workspace/langchain/.venv/lib/python3.9/site-packages (from posthog>=2.4.0->chromadb) (1.6)\n",
      "Requirement already satisfied: backoff>=1.10.0 in /workspace/langchain/.venv/lib/python3.9/site-packages (from posthog>=2.4.0->chromadb) (2.2.1)\n",
      "Requirement already satisfied: typing-extensions>=4.2.0 in /workspace/langchain/.venv/lib/python3.9/site-packages (from pydantic>=1.9->chromadb) (4.5.0)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in /workspace/langchain/.venv/lib/python3.9/site-packages (from requests>=2.28->chromadb) (3.1.0)\n",
      "Requirement already satisfied: idna<4,>=2.5 in /workspace/langchain/.venv/lib/python3.9/site-packages (from requests>=2.28->chromadb) (3.4)\n",
      "Requirement already satisfied: transformers<5.0.0,>=4.6.0 in /workspace/langchain/.venv/lib/python3.9/site-packages (from sentence-transformers>=2.2.2->chromadb) (4.28.1)\n",
      "Requirement already satisfied: tqdm in /workspace/langchain/.venv/lib/python3.9/site-packages (from sentence-transformers>=2.2.2->chromadb) (4.65.0)\n",
      "Requirement already satisfied: torch>=1.6.0 in /workspace/langchain/.venv/lib/python3.9/site-packages (from sentence-transformers>=2.2.2->chromadb) (1.13.1)\n",
      "Requirement already satisfied: torchvision in /workspace/langchain/.venv/lib/python3.9/site-packages (from sentence-transformers>=2.2.2->chromadb) (0.14.1)\n",
      "Requirement already satisfied: scikit-learn in /workspace/langchain/.venv/lib/python3.9/site-packages (from sentence-transformers>=2.2.2->chromadb) (1.2.2)\n",
      "Requirement already satisfied: scipy in /workspace/langchain/.venv/lib/python3.9/site-packages (from sentence-transformers>=2.2.2->chromadb) (1.9.3)\n",
      "Requirement already satisfied: nltk in /workspace/langchain/.venv/lib/python3.9/site-packages (from sentence-transformers>=2.2.2->chromadb) (3.8.1)\n",
      "Requirement already satisfied: sentencepiece in /workspace/langchain/.venv/lib/python3.9/site-packages (from sentence-transformers>=2.2.2->chromadb) (0.1.98)\n",
      "Requirement already satisfied: huggingface-hub>=0.4.0 in /workspace/langchain/.venv/lib/python3.9/site-packages (from sentence-transformers>=2.2.2->chromadb) (0.13.4)\n",
      "Requirement already satisfied: click>=7.0 in /workspace/langchain/.venv/lib/python3.9/site-packages (from uvicorn[standard]>=0.18.3->chromadb) (8.1.3)\n",
      "Requirement already satisfied: h11>=0.8 in /workspace/langchain/.venv/lib/python3.9/site-packages (from uvicorn[standard]>=0.18.3->chromadb) (0.14.0)\n",
      "Requirement already satisfied: httptools>=0.5.0 in /workspace/langchain/.venv/lib/python3.9/site-packages (from uvicorn[standard]>=0.18.3->chromadb) (0.5.0)\n",
      "Requirement already satisfied: python-dotenv>=0.13 in /workspace/langchain/.venv/lib/python3.9/site-packages (from uvicorn[standard]>=0.18.3->chromadb) (1.0.0)\n",
      "Requirement already satisfied: uvloop!=0.15.0,!=0.15.1,>=0.14.0 in /workspace/langchain/.venv/lib/python3.9/site-packages (from uvicorn[standard]>=0.18.3->chromadb) (0.17.0)\n",
      "Requirement already satisfied: watchfiles>=0.13 in /workspace/langchain/.venv/lib/python3.9/site-packages (from uvicorn[standard]>=0.18.3->chromadb) (0.19.0)\n",
      "Requirement already satisfied: websockets>=10.4 in /workspace/langchain/.venv/lib/python3.9/site-packages (from uvicorn[standard]>=0.18.3->chromadb) (11.0.2)\n",
      "Requirement already satisfied: filelock in /workspace/langchain/.venv/lib/python3.9/site-packages (from huggingface-hub>=0.4.0->sentence-transformers>=2.2.2->chromadb) (3.12.0)\n",
      "Requirement already satisfied: packaging>=20.9 in /workspace/langchain/.venv/lib/python3.9/site-packages (from huggingface-hub>=0.4.0->sentence-transformers>=2.2.2->chromadb) (23.1)\n",
      "Requirement already satisfied: anyio<5,>=3.4.0 in /workspace/langchain/.venv/lib/python3.9/site-packages (from starlette<0.27.0,>=0.26.1->fastapi>=0.85.1->chromadb) (3.6.2)\n",
      "Requirement already satisfied: nvidia-cuda-runtime-cu11==11.7.99 in /workspace/langchain/.venv/lib/python3.9/site-packages (from torch>=1.6.0->sentence-transformers>=2.2.2->chromadb) (11.7.99)\n",
      "Requirement already satisfied: nvidia-cudnn-cu11==8.5.0.96 in /workspace/langchain/.venv/lib/python3.9/site-packages (from torch>=1.6.0->sentence-transformers>=2.2.2->chromadb) (8.5.0.96)\n",
      "Requirement already satisfied: nvidia-cublas-cu11==11.10.3.66 in /workspace/langchain/.venv/lib/python3.9/site-packages (from torch>=1.6.0->sentence-transformers>=2.2.2->chromadb) (11.10.3.66)\n",
      "Requirement already satisfied: nvidia-cuda-nvrtc-cu11==11.7.99 in /workspace/langchain/.venv/lib/python3.9/site-packages (from torch>=1.6.0->sentence-transformers>=2.2.2->chromadb) (11.7.99)\n",
      "Requirement already satisfied: setuptools in /workspace/langchain/.venv/lib/python3.9/site-packages (from nvidia-cublas-cu11==11.10.3.66->torch>=1.6.0->sentence-transformers>=2.2.2->chromadb) (67.7.1)\n",
      "Requirement already satisfied: wheel in /workspace/langchain/.venv/lib/python3.9/site-packages (from nvidia-cublas-cu11==11.10.3.66->torch>=1.6.0->sentence-transformers>=2.2.2->chromadb) (0.40.0)\n",
      "Requirement already satisfied: regex!=2019.12.17 in /workspace/langchain/.venv/lib/python3.9/site-packages (from transformers<5.0.0,>=4.6.0->sentence-transformers>=2.2.2->chromadb) (2023.3.23)\n",
      "Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /workspace/langchain/.venv/lib/python3.9/site-packages (from transformers<5.0.0,>=4.6.0->sentence-transformers>=2.2.2->chromadb) (0.13.3)\n",
      "Requirement already satisfied: joblib in /workspace/langchain/.venv/lib/python3.9/site-packages (from nltk->sentence-transformers>=2.2.2->chromadb) (1.2.0)\n",
      "Requirement already satisfied: threadpoolctl>=2.0.0 in /workspace/langchain/.venv/lib/python3.9/site-packages (from scikit-learn->sentence-transformers>=2.2.2->chromadb) (3.1.0)\n",
      "Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /workspace/langchain/.venv/lib/python3.9/site-packages (from torchvision->sentence-transformers>=2.2.2->chromadb) (9.5.0)\n",
      "Requirement already satisfied: sniffio>=1.1 in /workspace/langchain/.venv/lib/python3.9/site-packages (from anyio<5,>=3.4.0->starlette<0.27.0,>=0.26.1->fastapi>=0.85.1->chromadb) (1.3.0)\n"
     ]
    }
   ],
   "source": [
    "!poetry run pip install pyyaml chromadb\n",
    "import yaml"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 82,
   "id": "0d1633c3",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
      "List all the customer first names that start with 'a'\n",
      "SQLQuery:"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/workspace/langchain/.venv/lib/python3.9/site-packages/transformers/pipelines/base.py:1070: UserWarning: You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a dataset\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[32;1m\u001b[1;3mSELECT firstname FROM customer WHERE firstname LIKE '%a%'\u001b[0m\n",
      "SQLResult: \u001b[33;1m\u001b[1;3m[('François',), ('František',), ('Helena',), ('Astrid',), ('Daan',), ('Kara',), ('Eduardo',), ('Alexandre',), ('Fernanda',), ('Mark',), ('Frank',), ('Jack',), ('Dan',), ('Kathy',), ('Heather',), ('Frank',), ('Richard',), ('Patrick',), ('Julia',), ('Edward',), ('Martha',), ('Aaron',), ('Madalena',), ('Hannah',), ('Niklas',), ('Camille',), ('Marc',), ('Wyatt',), ('Isabelle',), ('Ladislav',), ('Lucas',), ('Johannes',), ('Stanisław',), ('Joakim',), ('Emma',), ('Mark',), ('Manoj',), ('Puja',)]\u001b[0m\n",
      "Answer:"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/workspace/langchain/.venv/lib/python3.9/site-packages/transformers/pipelines/base.py:1070: UserWarning: You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a dataset\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[32;1m\u001b[1;3m[('François', 'Frantiek', 'Helena', 'Astrid', 'Daan', 'Kara', 'Eduardo', 'Alexandre', 'Fernanda', 'Mark', 'Frank', 'Jack', 'Dan', 'Kathy', 'Heather', 'Frank', 'Richard', 'Patrick', 'Julia', 'Edward', 'Martha', 'Aaron', 'Madalena', 'Hannah', 'Niklas', 'Camille', 'Marc', 'Wyatt', 'Isabelle', 'Ladislav', 'Lucas', 'Johannes', 'Stanisaw', 'Joakim', 'Emma', 'Mark', 'Manoj', 'Puja']\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n",
      "*** Query succeeded\n",
      "\n",
      "answer: '[(''François'', ''Frantiek'', ''Helena'', ''Astrid'', ''Daan'', ''Kara'',\n",
      "  ''Eduardo'', ''Alexandre'', ''Fernanda'', ''Mark'', ''Frank'', ''Jack'', ''Dan'',\n",
      "  ''Kathy'', ''Heather'', ''Frank'', ''Richard'', ''Patrick'', ''Julia'', ''Edward'',\n",
      "  ''Martha'', ''Aaron'', ''Madalena'', ''Hannah'', ''Niklas'', ''Camille'', ''Marc'',\n",
      "  ''Wyatt'', ''Isabelle'', ''Ladislav'', ''Lucas'', ''Johannes'', ''Stanisaw'', ''Joakim'',\n",
      "  ''Emma'', ''Mark'', ''Manoj'', ''Puja'']'\n",
      "input: List all the customer first names that start with 'a'\n",
      "sql_cmd: SELECT firstname FROM customer WHERE firstname LIKE '%a%'\n",
      "sql_result: '[(''François'',), (''František'',), (''Helena'',), (''Astrid'',), (''Daan'',),\n",
      "  (''Kara'',), (''Eduardo'',), (''Alexandre'',), (''Fernanda'',), (''Mark'',), (''Frank'',),\n",
      "  (''Jack'',), (''Dan'',), (''Kathy'',), (''Heather'',), (''Frank'',), (''Richard'',),\n",
      "  (''Patrick'',), (''Julia'',), (''Edward'',), (''Martha'',), (''Aaron'',), (''Madalena'',),\n",
      "  (''Hannah'',), (''Niklas'',), (''Camille'',), (''Marc'',), (''Wyatt'',), (''Isabelle'',),\n",
      "  (''Ladislav'',), (''Lucas'',), (''Johannes'',), (''Stanisław'',), (''Joakim'',),\n",
      "  (''Emma'',), (''Mark'',), (''Manoj'',), (''Puja'',)]'\n",
      "table_info: \"\\nCREATE TABLE \\\"Customer\\\" (\\n\\t\\\"CustomerId\\\" INTEGER NOT NULL, \\n\\t\\\n",
      "  \\\"FirstName\\\" NVARCHAR(40) NOT NULL, \\n\\t\\\"LastName\\\" NVARCHAR(20) NOT NULL, \\n\\t\\\n",
      "  \\\"Company\\\" NVARCHAR(80), \\n\\t\\\"Address\\\" NVARCHAR(70), \\n\\t\\\"City\\\" NVARCHAR(40),\\\n",
      "  \\ \\n\\t\\\"State\\\" NVARCHAR(40), \\n\\t\\\"Country\\\" NVARCHAR(40), \\n\\t\\\"PostalCode\\\" NVARCHAR(10),\\\n",
      "  \\ \\n\\t\\\"Phone\\\" NVARCHAR(24), \\n\\t\\\"Fax\\\" NVARCHAR(24), \\n\\t\\\"Email\\\" NVARCHAR(60)\\\n",
      "  \\ NOT NULL, \\n\\t\\\"SupportRepId\\\" INTEGER, \\n\\tPRIMARY KEY (\\\"CustomerId\\\"), \\n\\t\\\n",
      "  FOREIGN KEY(\\\"SupportRepId\\\") REFERENCES \\\"Employee\\\" (\\\"EmployeeId\\\")\\n)\\n\\n/*\\n\\\n",
      "  3 rows from Customer table:\\nCustomerId\\tFirstName\\tLastName\\tCompany\\tAddress\\t\\\n",
      "  City\\tState\\tCountry\\tPostalCode\\tPhone\\tFax\\tEmail\\tSupportRepId\\n1\\tLuís\\tGonçalves\\t\\\n",
      "  Embraer - Empresa Brasileira de Aeronáutica S.A.\\tAv. Brigadeiro Faria Lima, 2170\\t\\\n",
      "  São José dos Campos\\tSP\\tBrazil\\t12227-000\\t+55 (12) 3923-5555\\t+55 (12) 3923-5566\\t\\\n",
      "  [email protected]\\t3\\n2\\tLeonie\\tKöhler\\tNone\\tTheodor-Heuss-Straße 34\\tStuttgart\\t\\\n",
      "  None\\tGermany\\t70174\\t+49 0711 2842222\\tNone\\[email protected]\\t5\\n3\\tFrançois\\t\\\n",
      "  Tremblay\\tNone\\t1498 rue Bélanger\\tMontréal\\tQC\\tCanada\\tH2G 1A7\\t+1 (514) 721-4711\\t\\\n",
      "  None\\[email protected]\\t3\\n*/\"\n",
      "\n"
     ]
    }
   ],
   "source": [
    "from typing import Dict\n",
    "\n",
    "QUERY = \"List all the customer first names that start with 'a'\"\n",
    "\n",
    "def _parse_example(result: Dict) -> Dict:\n",
    "    sql_cmd_key = \"sql_cmd\"\n",
    "    sql_result_key = \"sql_result\"\n",
    "    table_info_key = \"table_info\"\n",
    "    input_key = \"input\"\n",
    "    final_answer_key = \"answer\"\n",
    "\n",
    "    _example = {\n",
    "        \"input\": result.get(\"query\"),\n",
    "    }\n",
    "\n",
    "    steps = result.get(\"intermediate_steps\")\n",
    "    answer_key = sql_cmd_key # the first one\n",
    "    for step in steps:\n",
    "        # The steps are in pairs, a dict (input) followed by a string (output).\n",
    "        # Unfortunately there is no schema but you can look at the input key of the\n",
    "        # dict to see what the output is supposed to be\n",
    "        if isinstance(step, dict):\n",
    "            # Grab the table info from input dicts in the intermediate steps once\n",
    "            if table_info_key not in _example:\n",
    "                _example[table_info_key] = step.get(table_info_key)\n",
    "\n",
    "            if input_key in step:\n",
    "                if step[input_key].endswith(\"SQLQuery:\"):\n",
    "                    answer_key = sql_cmd_key # this is the SQL generation input\n",
    "                if step[input_key].endswith(\"Answer:\"):\n",
    "                    answer_key = final_answer_key # this is the final answer input\n",
    "            elif sql_cmd_key in step:\n",
    "                _example[sql_cmd_key] = step[sql_cmd_key]\n",
    "                answer_key = sql_result_key # this is SQL execution input\n",
    "        elif isinstance(step, str):\n",
    "            # The preceding element should have set the answer_key\n",
    "            _example[answer_key] = step\n",
    "    return _example\n",
    "\n",
    "example: any\n",
    "try:\n",
    "    result = local_chain(QUERY)\n",
    "    print(\"*** Query succeeded\")\n",
    "    example = _parse_example(result)\n",
    "except Exception as exc:\n",
    "    print(\"*** Query failed\")\n",
    "    result = {\n",
    "        \"query\": QUERY,\n",
    "        \"intermediate_steps\": exc.intermediate_steps\n",
    "    }\n",
    "    example = _parse_example(result)\n",
    "\n",
    "\n",
    "# print for now, in reality you may want to write this out to a YAML file or database for manual fix-ups offline\n",
    "yaml_example = yaml.dump(example, allow_unicode=True)\n",
    "print(\"\\n\" + yaml_example)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "da618de6",
   "metadata": {},
   "source": [
    "Run the snippet above a few times, or log exceptions in your deployed environment, to collect lots of examples of inputs, table_info and sql_cmd generated by your language model. The sql_cmd values will be incorrect and you can manually fix them up to build a collection of examples, e.g. here we are using YAML to keep a neat record of our inputs and corrected SQL output that we can build up over time."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 83,
   "id": "b81b9fdd",
   "metadata": {},
   "outputs": [],
   "source": [
    "YAML_EXAMPLES = \"\"\"\n",
    "- input: How many customers are not from Brazil?\n",
    "  table_info: |\n",
    "    CREATE TABLE \"Customer\" (\n",
    "      \"CustomerId\" INTEGER NOT NULL, \n",
    "      \"FirstName\" NVARCHAR(40) NOT NULL, \n",
    "      \"LastName\" NVARCHAR(20) NOT NULL, \n",
    "      \"Company\" NVARCHAR(80), \n",
    "      \"Address\" NVARCHAR(70), \n",
    "      \"City\" NVARCHAR(40), \n",
    "      \"State\" NVARCHAR(40), \n",
    "      \"Country\" NVARCHAR(40), \n",
    "      \"PostalCode\" NVARCHAR(10), \n",
    "      \"Phone\" NVARCHAR(24), \n",
    "      \"Fax\" NVARCHAR(24), \n",
    "      \"Email\" NVARCHAR(60) NOT NULL, \n",
    "      \"SupportRepId\" INTEGER, \n",
    "      PRIMARY KEY (\"CustomerId\"), \n",
    "      FOREIGN KEY(\"SupportRepId\") REFERENCES \"Employee\" (\"EmployeeId\")\n",
    "    )\n",
    "  sql_cmd: SELECT COUNT(*) FROM \"Customer\" WHERE NOT \"Country\" = \"Brazil\";\n",
    "  sql_result: \"[(54,)]\"\n",
    "  answer: 54 customers are not from Brazil.\n",
    "- input: list all the genres that start with 'r'\n",
    "  table_info: |\n",
    "    CREATE TABLE \"Genre\" (\n",
    "      \"GenreId\" INTEGER NOT NULL, \n",
    "      \"Name\" NVARCHAR(120), \n",
    "      PRIMARY KEY (\"GenreId\")\n",
    "    )\n",
    "\n",
    "    /*\n",
    "    3 rows from Genre table:\n",
    "    GenreId\tName\n",
    "    1\tRock\n",
    "    2\tJazz\n",
    "    3\tMetal\n",
    "    */\n",
    "  sql_cmd: SELECT \"Name\" FROM \"Genre\" WHERE \"Name\" LIKE 'r%';\n",
    "  sql_result: \"[('Rock',), ('Rock and Roll',), ('Reggae',), ('R&B/Soul',)]\"\n",
    "  answer: The genres that start with 'r' are Rock, Rock and Roll, Reggae and R&B/Soul. \n",
    "\"\"\""
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "6b13b4d5",
   "metadata": {},
   "source": [
    "Now that you have some examples (with manually corrected output SQL), you can do few shot prompt seeding the usual way:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 84,
   "id": "0d174f59",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Using embedded DuckDB without persistence: data will be transient\n"
     ]
    }
   ],
   "source": [
    "from langchain import FewShotPromptTemplate, PromptTemplate\n",
    "from langchain.chains.sql_database.prompt import _sqlite_prompt, PROMPT_SUFFIX\n",
    "from langchain.embeddings.huggingface import HuggingFaceEmbeddings\n",
    "from langchain.prompts.example_selector.semantic_similarity import SemanticSimilarityExampleSelector\n",
    "from langchain.vectorstores import Chroma\n",
    "\n",
    "example_prompt = PromptTemplate(\n",
    "    input_variables=[\"table_info\", \"input\", \"sql_cmd\", \"sql_result\", \"answer\"],\n",
    "    template=\"{table_info}\\n\\nQuestion: {input}\\nSQLQuery: {sql_cmd}\\nSQLResult: {sql_result}\\nAnswer: {answer}\",\n",
    ")\n",
    "\n",
    "examples_dict = yaml.safe_load(YAML_EXAMPLES)\n",
    "\n",
    "local_embeddings = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-MiniLM-L6-v2\")\n",
    "\n",
    "example_selector = SemanticSimilarityExampleSelector.from_examples(\n",
    "                        # This is the list of examples available to select from.\n",
    "                        examples_dict,\n",
    "                        # This is the embedding class used to produce embeddings which are used to measure semantic similarity.\n",
    "                        local_embeddings,\n",
    "                        # This is the VectorStore class that is used to store the embeddings and do a similarity search over.\n",
    "                        Chroma,  # type: ignore\n",
    "                        # This is the number of examples to produce and include per prompt\n",
    "                        k=min(3, len(examples_dict)),\n",
    "                    )\n",
    "\n",
    "few_shot_prompt = FewShotPromptTemplate(\n",
    "    example_selector=example_selector,\n",
    "    example_prompt=example_prompt,\n",
    "    prefix=_sqlite_prompt + \"Here are some examples:\",\n",
    "    suffix=PROMPT_SUFFIX,\n",
    "    input_variables=[\"table_info\", \"input\", \"top_k\"],\n",
    ")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "2324e41f",
   "metadata": {},
   "source": [
    "The model should do better now with this few shot prompt, especially for inputs similar to the examples you have seeded it with."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 85,
   "id": "c4dcf76c",
   "metadata": {},
   "outputs": [],
   "source": [
    "local_chain = SQLDatabaseChain.from_llm(local_llm, db, prompt=few_shot_prompt, use_query_checker=True, verbose=True, return_intermediate_steps=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 97,
   "id": "5ee7a26c",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
      "How many customers are from Brazil?\n",
      "SQLQuery:\u001b[32;1m\u001b[1;3mSELECT count(*) FROM Customer WHERE Country = \"Brazil\";\u001b[0m\n",
      "SQLResult: \u001b[33;1m\u001b[1;3m[(5,)]\u001b[0m\n",
      "Answer:\u001b[32;1m\u001b[1;3m[5]\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "result = local_chain(\"How many customers are from Brazil?\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 98,
   "id": "ead61709",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
      "How many customers are not from Brazil?\n",
      "SQLQuery:\u001b[32;1m\u001b[1;3mSELECT count(*) FROM customer WHERE country NOT IN (SELECT country FROM customer WHERE country = 'Brazil')\u001b[0m\n",
      "SQLResult: \u001b[33;1m\u001b[1;3m[(54,)]\u001b[0m\n",
      "Answer:\u001b[32;1m\u001b[1;3m54 customers are not from Brazil.\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "result = local_chain(\"How many customers are not from Brazil?\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 99,
   "id": "7af127d9",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new SQLDatabaseChain chain...\u001b[0m\n",
      "How many customers are there in total?\n",
      "SQLQuery:\u001b[32;1m\u001b[1;3mSELECT count(*) FROM Customer;\u001b[0m\n",
      "SQLResult: \u001b[33;1m\u001b[1;3m[(59,)]\u001b[0m\n",
      "Answer:\u001b[32;1m\u001b[1;3mThere are 59 customers in total.\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "result = local_chain(\"How many customers are there in total?\")"
   ]
  }
 ],
 "metadata": {
  "@webio": {
   "lastCommId": null,
   "lastKernelId": null
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}