File size: 6,890 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "87455ddb",
   "metadata": {},
   "source": [
    "# Multi-Input Tools\n",
    "\n",
    "This notebook shows how to use a tool that requires multiple inputs with an agent. The recommended way to do so is with the `StructuredTool` class.\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "113c8805",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "import os\n",
    "os.environ[\"LANGCHAIN_TRACING\"] = \"true\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "9c257017",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from langchain import OpenAI\n",
    "from langchain.agents import initialize_agent, AgentType\n",
    "\n",
    "llm = OpenAI(temperature=0)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "21623e8f",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from langchain.tools import StructuredTool\n",
    "\n",
    "def multiplier(a: float, b: float) -> float:\n",
    "    \"\"\"Multiply the provided floats.\"\"\"\n",
    "    return a * b\n",
    "\n",
    "tool = StructuredTool.from_function(multiplier)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "ae7e8e07",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# Structured tools are compatible with the STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION agent type. \n",
    "agent_executor = initialize_agent([tool], llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "6cfa22d7",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3m\n",
      "Thought: I need to multiply 3 and 4\n",
      "Action:\n",
      "```\n",
      "{\n",
      "  \"action\": \"multiplier\",\n",
      "  \"action_input\": {\"a\": 3, \"b\": 4}\n",
      "}\n",
      "```\n",
      "\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m12\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I know what to respond\n",
      "Action:\n",
      "```\n",
      "{\n",
      "  \"action\": \"Final Answer\",\n",
      "  \"action_input\": \"3 times 4 is 12\"\n",
      "}\n",
      "```\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'3 times 4 is 12'"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "agent_executor.run(\"What is 3 times 4\")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "e643b307",
   "metadata": {},
   "source": [
    "## Multi-Input Tools with a string format\n",
    "\n",
    "An alternative to the structured tool would be to use the regular `Tool` class and accept a single string. The tool would then have to handle the parsing logic to extract the relavent values from the text, which tightly couples the tool representation to the agent prompt. This is still useful if the underlying language model can't reliabl generate structured schema. \n",
    "\n",
    "Let's take the multiplication function as an example. In order to use this, we will tell the agent to generate the \"Action Input\" as a comma-separated list of length two. We will then write a thin wrapper that takes a string, splits it into two around a comma, and passes both parsed sides as integers to the multiplication function."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "291149b6",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.llms import OpenAI\n",
    "from langchain.agents import initialize_agent, Tool\n",
    "from langchain.agents import AgentType"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "71b6bead",
   "metadata": {},
   "source": [
    "Here is the multiplication function, as well as a wrapper to parse a string as input."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "f0b82020",
   "metadata": {},
   "outputs": [],
   "source": [
    "def multiplier(a, b):\n",
    "    return a * b\n",
    "\n",
    "def parsing_multiplier(string):\n",
    "    a, b = string.split(\",\")\n",
    "    return multiplier(int(a), int(b))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "6db1d43f",
   "metadata": {},
   "outputs": [],
   "source": [
    "llm = OpenAI(temperature=0)\n",
    "tools = [\n",
    "    Tool(\n",
    "        name = \"Multiplier\",\n",
    "        func=parsing_multiplier,\n",
    "        description=\"useful for when you need to multiply two numbers together. The input to this tool should be a comma separated list of numbers of length two, representing the two numbers you want to multiply together. For example, `1,2` would be the input if you wanted to multiply 1 by 2.\"\n",
    "    )\n",
    "]\n",
    "mrkl = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "aa25d0ca",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3m I need to multiply two numbers\n",
      "Action: Multiplier\n",
      "Action Input: 3,4\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m12\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
      "Final Answer: 3 times 4 is 12\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'3 times 4 is 12'"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "mrkl.run(\"What is 3 times 4\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7ea340c0",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.2"
  },
  "vscode": {
   "interpreter": {
    "hash": "b1677b440931f40d89ef8be7bf03acb108ce003de0ac9b18e8d43753ea2e7103"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}