Spaces:
Running
Running
File size: 27,690 Bytes
cfd3735 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"jukit_cell_id": "DUXgyWySl5"
},
"source": [
"# SearxNG Search API\n",
"\n",
"This notebook goes over how to use a self hosted SearxNG search API to search the web.\n",
"\n",
"You can [check this link](https://docs.searxng.org/dev/search_api.html) for more informations about Searx API parameters."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"jukit_cell_id": "OIHXztO2UT"
},
"outputs": [],
"source": [
"import pprint\n",
"from langchain.utilities import SearxSearchWrapper"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"jukit_cell_id": "4SzT9eDMjt"
},
"outputs": [],
"source": [
"search = SearxSearchWrapper(searx_host=\"http://127.0.0.1:8888\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"jukit_cell_id": "jCSkIlQDUK"
},
"source": [
"For some engines, if a direct `answer` is available the warpper will print the answer instead of the full list of search results. You can use the `results` method of the wrapper if you want to obtain all the results."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"jukit_cell_id": "gGM9PVQX6m"
},
"outputs": [
{
"data": {
"text/plain": [
"'Paris is the capital of France, the largest country of Europe with 550 000 km2 (65 millions inhabitants). Paris has 2.234 million inhabitants end 2011. She is the core of Ile de France region (12 million people).'"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"search.run(\"What is the capital of France\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"jukit_cell_id": "OHyurqUPbS"
},
"source": [
"## Custom Parameters\n",
"\n",
"SearxNG supports up to [139 search engines](https://docs.searxng.org/admin/engines/configured_engines.html#configured-engines). You can also customize the Searx wrapper with arbitrary named parameters that will be passed to the Searx search API . In the below example we will making a more interesting use of custom search parameters from searx search api."
]
},
{
"cell_type": "markdown",
"metadata": {
"jukit_cell_id": "n1B2AyLKi4"
},
"source": [
"In this example we will be using the `engines` parameters to query wikipedia"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"jukit_cell_id": "UTEdJ03LqA"
},
"outputs": [],
"source": [
"search = SearxSearchWrapper(searx_host=\"http://127.0.0.1:8888\", k=5) # k is for max number of items"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"jukit_cell_id": "3FyQ6yHI8K",
"tags": [
"scroll-output"
]
},
"outputs": [
{
"data": {
"text/plain": [
"'Large language models (LLMs) represent a major advancement in AI, with the promise of transforming domains through learned knowledge. LLM sizes have been increasing 10X every year for the last few years, and as these models grow in complexity and size, so do their capabilities.\\n\\nGPT-3 can translate language, write essays, generate computer code, and more — all with limited to no supervision. In July 2020, OpenAI unveiled GPT-3, a language model that was easily the largest known at the time. Put simply, GPT-3 is trained to predict the next word in a sentence, much like how a text message autocomplete feature works.\\n\\nA large language model, or LLM, is a deep learning algorithm that can recognize, summarize, translate, predict and generate text and other content based on knowledge gained from massive datasets. Large language models are among the most successful applications of transformer models.\\n\\nAll of today’s well-known language models—e.g., GPT-3 from OpenAI, PaLM or LaMDA from Google, Galactica or OPT from Meta, Megatron-Turing from Nvidia/Microsoft, Jurassic-1 from AI21 Labs—are...\\n\\nLarge language models (LLMs) such as GPT-3are increasingly being used to generate text. These tools should be used with care, since they can generate content that is biased, non-verifiable, constitutes original research, or violates copyrights.'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"search.run(\"large language model \", engines=['wiki'])"
]
},
{
"cell_type": "markdown",
"metadata": {
"jukit_cell_id": "SYz8nFkt81"
},
"source": [
"Passing other Searx parameters for searx like `language`"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"jukit_cell_id": "32rDh0Mvbx"
},
"outputs": [
{
"data": {
"text/plain": [
"'Aprendizaje profundo (en inglés, deep learning) es un conjunto de algoritmos de aprendizaje automático (en inglés, machine learning) que intenta modelar abstracciones de alto nivel en datos usando arquitecturas computacionales que admiten transformaciones no lineales múltiples e iterativas de datos expresados en forma matricial o tensorial. 1'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"search = SearxSearchWrapper(searx_host=\"http://127.0.0.1:8888\", k=1)\n",
"search.run(\"deep learning\", language='es', engines=['wiki'])"
]
},
{
"cell_type": "markdown",
"metadata": {
"jukit_cell_id": "d0x164ssV1"
},
"source": [
"## Obtaining results with metadata"
]
},
{
"cell_type": "markdown",
"metadata": {
"jukit_cell_id": "pF6rs8XcDH"
},
"source": [
"In this example we will be looking for scientific paper using the `categories` parameter and limiting the results to a `time_range` (not all engines support the time range option).\n",
"\n",
"We also would like to obtain the results in a structured way including metadata. For this we will be using the `results` method of the wrapper."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"jukit_cell_id": "BFgpPH0sxF"
},
"outputs": [],
"source": [
"search = SearxSearchWrapper(searx_host=\"http://127.0.0.1:8888\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"jukit_cell_id": "r7qUtvKNOh",
"tags": [
"scroll-output"
]
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{'snippet': '… on natural language instructions, large language models (… the '\n",
" 'prompt used to steer the model, and most effective prompts … to '\n",
" 'prompt engineering, we propose Automatic Prompt …',\n",
" 'title': 'Large language models are human-level prompt engineers',\n",
" 'link': 'https://arxiv.org/abs/2211.01910',\n",
" 'engines': ['google scholar'],\n",
" 'category': 'science'},\n",
" {'snippet': '… Large language models (LLMs) have introduced new possibilities '\n",
" 'for prototyping with AI [18]. Pre-trained on a large amount of '\n",
" 'text data, models … language instructions called prompts. …',\n",
" 'title': 'Promptchainer: Chaining large language model prompts through '\n",
" 'visual programming',\n",
" 'link': 'https://dl.acm.org/doi/abs/10.1145/3491101.3519729',\n",
" 'engines': ['google scholar'],\n",
" 'category': 'science'},\n",
" {'snippet': '… can introspect the large prompt model. We derive the view '\n",
" 'ϕ0(X) and the model h0 from T01. However, instead of fully '\n",
" 'fine-tuning T0 during co-training, we focus on soft prompt '\n",
" 'tuning, …',\n",
" 'title': 'Co-training improves prompt-based learning for large language '\n",
" 'models',\n",
" 'link': 'https://proceedings.mlr.press/v162/lang22a.html',\n",
" 'engines': ['google scholar'],\n",
" 'category': 'science'},\n",
" {'snippet': '… With the success of large language models (LLMs) of code and '\n",
" 'their use as … prompt design process become important. In this '\n",
" 'work, we propose a framework called Repo-Level Prompt …',\n",
" 'title': 'Repository-level prompt generation for large language models of '\n",
" 'code',\n",
" 'link': 'https://arxiv.org/abs/2206.12839',\n",
" 'engines': ['google scholar'],\n",
" 'category': 'science'},\n",
" {'snippet': '… Figure 2 | The benefits of different components of a prompt '\n",
" 'for the largest language model (Gopher), as estimated from '\n",
" 'hierarchical logistic regression. Each point estimates the '\n",
" 'unique …',\n",
" 'title': 'Can language models learn from explanations in context?',\n",
" 'link': 'https://arxiv.org/abs/2204.02329',\n",
" 'engines': ['google scholar'],\n",
" 'category': 'science'}]\n"
]
}
],
"source": [
"results = search.results(\"Large Language Model prompt\", num_results=5, categories='science', time_range='year')\n",
"pprint.pp(results)"
]
},
{
"cell_type": "markdown",
"metadata": {
"jukit_cell_id": "2seI78pR8T"
},
"source": [
"Get papers from arxiv"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"jukit_cell_id": "JyNgoFm0vo",
"tags": [
"scroll-output"
]
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{'snippet': 'Thanks to the advanced improvement of large pre-trained language '\n",
" 'models, prompt-based fine-tuning is shown to be effective on a '\n",
" 'variety of downstream tasks. Though many prompting methods have '\n",
" 'been investigated, it remains unknown which type of prompts are '\n",
" 'the most effective among three types of prompts (i.e., '\n",
" 'human-designed prompts, schema prompts and null prompts). In '\n",
" 'this work, we empirically compare the three types of prompts '\n",
" 'under both few-shot and fully-supervised settings. Our '\n",
" 'experimental results show that schema prompts are the most '\n",
" 'effective in general. Besides, the performance gaps tend to '\n",
" 'diminish when the scale of training data grows large.',\n",
" 'title': 'Do Prompts Solve NLP Tasks Using Natural Language?',\n",
" 'link': 'http://arxiv.org/abs/2203.00902v1',\n",
" 'engines': ['arxiv'],\n",
" 'category': 'science'},\n",
" {'snippet': 'Cross-prompt automated essay scoring (AES) requires the system '\n",
" 'to use non target-prompt essays to award scores to a '\n",
" 'target-prompt essay. Since obtaining a large quantity of '\n",
" 'pre-graded essays to a particular prompt is often difficult and '\n",
" 'unrealistic, the task of cross-prompt AES is vital for the '\n",
" 'development of real-world AES systems, yet it remains an '\n",
" 'under-explored area of research. Models designed for '\n",
" 'prompt-specific AES rely heavily on prompt-specific knowledge '\n",
" 'and perform poorly in the cross-prompt setting, whereas current '\n",
" 'approaches to cross-prompt AES either require a certain quantity '\n",
" 'of labelled target-prompt essays or require a large quantity of '\n",
" 'unlabelled target-prompt essays to perform transfer learning in '\n",
" 'a multi-step manner. To address these issues, we introduce '\n",
" 'Prompt Agnostic Essay Scorer (PAES) for cross-prompt AES. Our '\n",
" 'method requires no access to labelled or unlabelled '\n",
" 'target-prompt data during training and is a single-stage '\n",
" 'approach. PAES is easy to apply in practice and achieves '\n",
" 'state-of-the-art performance on the Automated Student Assessment '\n",
" 'Prize (ASAP) dataset.',\n",
" 'title': 'Prompt Agnostic Essay Scorer: A Domain Generalization Approach to '\n",
" 'Cross-prompt Automated Essay Scoring',\n",
" 'link': 'http://arxiv.org/abs/2008.01441v1',\n",
" 'engines': ['arxiv'],\n",
" 'category': 'science'},\n",
" {'snippet': 'Research on prompting has shown excellent performance with '\n",
" 'little or even no supervised training across many tasks. '\n",
" 'However, prompting for machine translation is still '\n",
" 'under-explored in the literature. We fill this gap by offering a '\n",
" 'systematic study on prompting strategies for translation, '\n",
" 'examining various factors for prompt template and demonstration '\n",
" 'example selection. We further explore the use of monolingual '\n",
" 'data and the feasibility of cross-lingual, cross-domain, and '\n",
" 'sentence-to-document transfer learning in prompting. Extensive '\n",
" 'experiments with GLM-130B (Zeng et al., 2022) as the testbed '\n",
" 'show that 1) the number and the quality of prompt examples '\n",
" 'matter, where using suboptimal examples degenerates translation; '\n",
" '2) several features of prompt examples, such as semantic '\n",
" 'similarity, show significant Spearman correlation with their '\n",
" 'prompting performance; yet, none of the correlations are strong '\n",
" 'enough; 3) using pseudo parallel prompt examples constructed '\n",
" 'from monolingual data via zero-shot prompting could improve '\n",
" 'translation; and 4) improved performance is achievable by '\n",
" 'transferring knowledge from prompt examples selected in other '\n",
" 'settings. We finally provide an analysis on the model outputs '\n",
" 'and discuss several problems that prompting still suffers from.',\n",
" 'title': 'Prompting Large Language Model for Machine Translation: A Case '\n",
" 'Study',\n",
" 'link': 'http://arxiv.org/abs/2301.07069v2',\n",
" 'engines': ['arxiv'],\n",
" 'category': 'science'},\n",
" {'snippet': 'Large language models can perform new tasks in a zero-shot '\n",
" 'fashion, given natural language prompts that specify the desired '\n",
" 'behavior. Such prompts are typically hand engineered, but can '\n",
" 'also be learned with gradient-based methods from labeled data. '\n",
" 'However, it is underexplored what factors make the prompts '\n",
" 'effective, especially when the prompts are natural language. In '\n",
" 'this paper, we investigate common attributes shared by effective '\n",
" 'prompts. We first propose a human readable prompt tuning method '\n",
" '(F LUENT P ROMPT) based on Langevin dynamics that incorporates a '\n",
" 'fluency constraint to find a diverse distribution of effective '\n",
" 'and fluent prompts. Our analysis reveals that effective prompts '\n",
" 'are topically related to the task domain and calibrate the prior '\n",
" 'probability of label words. Based on these findings, we also '\n",
" 'propose a method for generating prompts using only unlabeled '\n",
" 'data, outperforming strong baselines by an average of 7.0% '\n",
" 'accuracy across three tasks.',\n",
" 'title': \"Toward Human Readable Prompt Tuning: Kubrick's The Shining is a \"\n",
" 'good movie, and a good prompt too?',\n",
" 'link': 'http://arxiv.org/abs/2212.10539v1',\n",
" 'engines': ['arxiv'],\n",
" 'category': 'science'},\n",
" {'snippet': 'Prevailing methods for mapping large generative language models '\n",
" \"to supervised tasks may fail to sufficiently probe models' novel \"\n",
" 'capabilities. Using GPT-3 as a case study, we show that 0-shot '\n",
" 'prompts can significantly outperform few-shot prompts. We '\n",
" 'suggest that the function of few-shot examples in these cases is '\n",
" 'better described as locating an already learned task rather than '\n",
" 'meta-learning. This analysis motivates rethinking the role of '\n",
" 'prompts in controlling and evaluating powerful language models. '\n",
" 'In this work, we discuss methods of prompt programming, '\n",
" 'emphasizing the usefulness of considering prompts through the '\n",
" 'lens of natural language. We explore techniques for exploiting '\n",
" 'the capacity of narratives and cultural anchors to encode '\n",
" 'nuanced intentions and techniques for encouraging deconstruction '\n",
" 'of a problem into components before producing a verdict. '\n",
" 'Informed by this more encompassing theory of prompt programming, '\n",
" 'we also introduce the idea of a metaprompt that seeds the model '\n",
" 'to generate its own natural language prompts for a range of '\n",
" 'tasks. Finally, we discuss how these more general methods of '\n",
" 'interacting with language models can be incorporated into '\n",
" 'existing and future benchmarks and practical applications.',\n",
" 'title': 'Prompt Programming for Large Language Models: Beyond the Few-Shot '\n",
" 'Paradigm',\n",
" 'link': 'http://arxiv.org/abs/2102.07350v1',\n",
" 'engines': ['arxiv'],\n",
" 'category': 'science'}]\n"
]
}
],
"source": [
"results = search.results(\"Large Language Model prompt\", num_results=5, engines=['arxiv'])\n",
"pprint.pp(results)"
]
},
{
"cell_type": "markdown",
"metadata": {
"jukit_cell_id": "LhEisLFcZM"
},
"source": [
"In this example we query for `large language models` under the `it` category. We then filter the results that come from github."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"jukit_cell_id": "aATPfXzGzx"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{'snippet': 'Guide to using pre-trained large language models of source code',\n",
" 'title': 'Code-LMs',\n",
" 'link': 'https://github.com/VHellendoorn/Code-LMs',\n",
" 'engines': ['github'],\n",
" 'category': 'it'},\n",
" {'snippet': 'Dramatron uses large language models to generate coherent '\n",
" 'scripts and screenplays.',\n",
" 'title': 'dramatron',\n",
" 'link': 'https://github.com/deepmind/dramatron',\n",
" 'engines': ['github'],\n",
" 'category': 'it'}]\n"
]
}
],
"source": [
"results = search.results(\"large language model\", num_results = 20, categories='it')\n",
"pprint.pp(list(filter(lambda r: r['engines'][0] == 'github', results)))"
]
},
{
"cell_type": "markdown",
"metadata": {
"jukit_cell_id": "zDo2YjafuU"
},
"source": [
"We could also directly query for results from `github` and other source forges."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"jukit_cell_id": "5NrlredKxM",
"tags": [
"scroll-output"
]
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{'snippet': \"Implementation of 'A Watermark for Large Language Models' paper \"\n",
" 'by Kirchenbauer & Geiping et. al.',\n",
" 'title': 'Peutlefaire / LMWatermark',\n",
" 'link': 'https://gitlab.com/BrianPulfer/LMWatermark',\n",
" 'engines': ['gitlab'],\n",
" 'category': 'it'},\n",
" {'snippet': 'Guide to using pre-trained large language models of source code',\n",
" 'title': 'Code-LMs',\n",
" 'link': 'https://github.com/VHellendoorn/Code-LMs',\n",
" 'engines': ['github'],\n",
" 'category': 'it'},\n",
" {'snippet': '',\n",
" 'title': 'Simen Burud / Large-scale Language Models for Conversational '\n",
" 'Speech Recognition',\n",
" 'link': 'https://gitlab.com/BrianPulfer',\n",
" 'engines': ['gitlab'],\n",
" 'category': 'it'},\n",
" {'snippet': 'Dramatron uses large language models to generate coherent '\n",
" 'scripts and screenplays.',\n",
" 'title': 'dramatron',\n",
" 'link': 'https://github.com/deepmind/dramatron',\n",
" 'engines': ['github'],\n",
" 'category': 'it'},\n",
" {'snippet': 'Code for loralib, an implementation of \"LoRA: Low-Rank '\n",
" 'Adaptation of Large Language Models\"',\n",
" 'title': 'LoRA',\n",
" 'link': 'https://github.com/microsoft/LoRA',\n",
" 'engines': ['github'],\n",
" 'category': 'it'},\n",
" {'snippet': 'Code for the paper \"Evaluating Large Language Models Trained on '\n",
" 'Code\"',\n",
" 'title': 'human-eval',\n",
" 'link': 'https://github.com/openai/human-eval',\n",
" 'engines': ['github'],\n",
" 'category': 'it'},\n",
" {'snippet': 'A trend starts from \"Chain of Thought Prompting Elicits '\n",
" 'Reasoning in Large Language Models\".',\n",
" 'title': 'Chain-of-ThoughtsPapers',\n",
" 'link': 'https://github.com/Timothyxxx/Chain-of-ThoughtsPapers',\n",
" 'engines': ['github'],\n",
" 'category': 'it'},\n",
" {'snippet': 'Mistral: A strong, northwesterly wind: Framework for transparent '\n",
" 'and accessible large-scale language model training, built with '\n",
" 'Hugging Face 🤗 Transformers.',\n",
" 'title': 'mistral',\n",
" 'link': 'https://github.com/stanford-crfm/mistral',\n",
" 'engines': ['github'],\n",
" 'category': 'it'},\n",
" {'snippet': 'A prize for finding tasks that cause large language models to '\n",
" 'show inverse scaling',\n",
" 'title': 'prize',\n",
" 'link': 'https://github.com/inverse-scaling/prize',\n",
" 'engines': ['github'],\n",
" 'category': 'it'},\n",
" {'snippet': 'Optimus: the first large-scale pre-trained VAE language model',\n",
" 'title': 'Optimus',\n",
" 'link': 'https://github.com/ChunyuanLI/Optimus',\n",
" 'engines': ['github'],\n",
" 'category': 'it'},\n",
" {'snippet': 'Seminar on Large Language Models (COMP790-101 at UNC Chapel '\n",
" 'Hill, Fall 2022)',\n",
" 'title': 'llm-seminar',\n",
" 'link': 'https://github.com/craffel/llm-seminar',\n",
" 'engines': ['github'],\n",
" 'category': 'it'},\n",
" {'snippet': 'A central, open resource for data and tools related to '\n",
" 'chain-of-thought reasoning in large language models. Developed @ '\n",
" 'Samwald research group: https://samwald.info/',\n",
" 'title': 'ThoughtSource',\n",
" 'link': 'https://github.com/OpenBioLink/ThoughtSource',\n",
" 'engines': ['github'],\n",
" 'category': 'it'},\n",
" {'snippet': 'A comprehensive list of papers using large language/multi-modal '\n",
" 'models for Robotics/RL, including papers, codes, and related '\n",
" 'websites',\n",
" 'title': 'Awesome-LLM-Robotics',\n",
" 'link': 'https://github.com/GT-RIPL/Awesome-LLM-Robotics',\n",
" 'engines': ['github'],\n",
" 'category': 'it'},\n",
" {'snippet': 'Tools for curating biomedical training data for large-scale '\n",
" 'language modeling',\n",
" 'title': 'biomedical',\n",
" 'link': 'https://github.com/bigscience-workshop/biomedical',\n",
" 'engines': ['github'],\n",
" 'category': 'it'},\n",
" {'snippet': 'ChatGPT @ Home: Large Language Model (LLM) chatbot application, '\n",
" 'written by ChatGPT',\n",
" 'title': 'ChatGPT-at-Home',\n",
" 'link': 'https://github.com/Sentdex/ChatGPT-at-Home',\n",
" 'engines': ['github'],\n",
" 'category': 'it'},\n",
" {'snippet': 'Design and Deploy Large Language Model Apps',\n",
" 'title': 'dust',\n",
" 'link': 'https://github.com/dust-tt/dust',\n",
" 'engines': ['github'],\n",
" 'category': 'it'},\n",
" {'snippet': 'Polyglot: Large Language Models of Well-balanced Competence in '\n",
" 'Multi-languages',\n",
" 'title': 'polyglot',\n",
" 'link': 'https://github.com/EleutherAI/polyglot',\n",
" 'engines': ['github'],\n",
" 'category': 'it'},\n",
" {'snippet': 'Code release for \"Learning Video Representations from Large '\n",
" 'Language Models\"',\n",
" 'title': 'LaViLa',\n",
" 'link': 'https://github.com/facebookresearch/LaViLa',\n",
" 'engines': ['github'],\n",
" 'category': 'it'},\n",
" {'snippet': 'SmoothQuant: Accurate and Efficient Post-Training Quantization '\n",
" 'for Large Language Models',\n",
" 'title': 'smoothquant',\n",
" 'link': 'https://github.com/mit-han-lab/smoothquant',\n",
" 'engines': ['github'],\n",
" 'category': 'it'},\n",
" {'snippet': 'This repository contains the code, data, and models of the paper '\n",
" 'titled \"XL-Sum: Large-Scale Multilingual Abstractive '\n",
" 'Summarization for 44 Languages\" published in Findings of the '\n",
" 'Association for Computational Linguistics: ACL-IJCNLP 2021.',\n",
" 'title': 'xl-sum',\n",
" 'link': 'https://github.com/csebuetnlp/xl-sum',\n",
" 'engines': ['github'],\n",
" 'category': 'it'}]\n"
]
}
],
"source": [
"results = search.results(\"large language model\", num_results = 20, engines=['github', 'gitlab'])\n",
"pprint.pp(results)"
]
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|