File size: 2,419 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "40a27d3c-4e5c-4b96-b290-4c49d4fd7219",
   "metadata": {},
   "source": [
    "## HuggingFace Tools\n",
    "\n",
    "[Huggingface Tools](https://huggingface.co/docs/transformers/v4.29.0/en/custom_tools) supporting text I/O can be\n",
    "loaded directly using the `load_huggingface_tool` function."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d1055b75-362c-452a-b40d-c9a359706a3a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Requires transformers>=4.29.0 and huggingface_hub>=0.14.1\n",
    "!pip install --uprade transformers huggingface_hub > /dev/null"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "f964bb45-fba3-4919-b022-70a602ed4354",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "model_download_counter: This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub. It takes the name of the category (such as text-classification, depth-estimation, etc), and returns the name of the checkpoint\n"
     ]
    }
   ],
   "source": [
    "from langchain.agents import load_huggingface_tool\n",
    "\n",
    "tool = load_huggingface_tool(\"lysandre/hf-model-downloads\")\n",
    "\n",
    "print(f\"{tool.name}: {tool.description}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "641d9d79-95bb-469d-b40a-50f37375de7f",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'facebook/bart-large-mnli'"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "tool.run(\"text-classification\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "88724222-7c10-4aff-8713-751911dc8b63",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}