File size: 29,290 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "5436020b",
   "metadata": {},
   "source": [
    "# Defining Custom Tools\n",
    "\n",
    "When constructing your own agent, you will need to provide it with a list of Tools that it can use. Besides the actual function that is called, the Tool consists of several components:\n",
    "\n",
    "- name (str), is required and must be unique within a set of tools provided to an agent\n",
    "- description (str), is optional but recommended, as it is used by an agent to determine tool use\n",
    "- return_direct (bool), defaults to False\n",
    "- args_schema (Pydantic BaseModel), is optional but recommended, can be used to provide more information (e.g., few-shot examples) or validation for expected parameters.\n",
    "\n",
    "\n",
    "There are two main ways to define a tool, we will cover both in the example below."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "1aaba18c",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# Import things that are needed generically\n",
    "from langchain import LLMMathChain, SerpAPIWrapper\n",
    "from langchain.agents import AgentType, initialize_agent\n",
    "from langchain.chat_models import ChatOpenAI\n",
    "from langchain.tools import BaseTool, StructuredTool, Tool, tool"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8e2c3874",
   "metadata": {},
   "source": [
    "Initialize the LLM to use for the agent."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "36ed392e",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "llm = ChatOpenAI(temperature=0)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "f8bc72c2",
   "metadata": {},
   "source": [
    "## Completely New Tools - String Input and Output\n",
    "\n",
    "The simplest tools accept a single query string and return a string output. If your tool function requires multiple arguments, you might want to skip down to the `StructuredTool` section below.\n",
    "\n",
    "There are two ways to do this: either by using the Tool dataclass, or by subclassing the BaseTool class."
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "b63fcc3b",
   "metadata": {},
   "source": [
    "### Tool dataclass\n",
    "\n",
    "The 'Tool' dataclass wraps functions that accept a single string input and returns a string output."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "56ff7670",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/wfh/code/lc/lckg/langchain/chains/llm_math/base.py:50: UserWarning: Directly instantiating an LLMMathChain with an llm is deprecated. Please instantiate with llm_chain argument or using the from_llm class method.\n",
      "  warnings.warn(\n"
     ]
    }
   ],
   "source": [
    "# Load the tool configs that are needed.\n",
    "search = SerpAPIWrapper()\n",
    "llm_math_chain = LLMMathChain(llm=llm, verbose=True)\n",
    "tools = [\n",
    "    Tool.from_function(\n",
    "        func=search.run,\n",
    "        name = \"Search\",\n",
    "        description=\"useful for when you need to answer questions about current events\"\n",
    "        # coroutine= ... <- you can specify an async method if desired as well\n",
    "    ),\n",
    "]"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "e9b560f7",
   "metadata": {},
   "source": [
    "You can also define a custom `args_schema`` to provide more information about inputs."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "631361e7",
   "metadata": {},
   "outputs": [],
   "source": [
    "from pydantic import BaseModel, Field\n",
    "\n",
    "class CalculatorInput(BaseModel):\n",
    "    question: str = Field()\n",
    "        \n",
    "\n",
    "tools.append(\n",
    "    Tool.from_function(\n",
    "        func=llm_math_chain.run,\n",
    "        name=\"Calculator\",\n",
    "        description=\"useful for when you need to answer questions about math\",\n",
    "        args_schema=CalculatorInput\n",
    "        # coroutine= ... <- you can specify an async method if desired as well\n",
    "    )\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "5b93047d",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# Construct the agent. We will use the default agent type here.\n",
    "# See documentation for a full list of options.\n",
    "agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "6f96a891",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3mI need to find out Leo DiCaprio's girlfriend's name and her age\n",
      "Action: Search\n",
      "Action Input: \"Leo DiCaprio girlfriend\"\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3mAfter rumours of a romance with Gigi Hadid, the Oscar winner has seemingly moved on. First being linked to the television personality in September 2022, it appears as if his \"age bracket\" has moved up. This follows his rumoured relationship with mere 19-year-old Eden Polani.\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mI still need to find out his current girlfriend's name and age\n",
      "Action: Search\n",
      "Action Input: \"Leo DiCaprio current girlfriend\"\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3mJust Jared on Instagram: “Leonardo DiCaprio & girlfriend Camila Morrone couple up for a lunch date!\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mNow that I know his girlfriend's name is Camila Morrone, I need to find her current age\n",
      "Action: Search\n",
      "Action Input: \"Camila Morrone age\"\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m25 years\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mNow that I have her age, I need to calculate her age raised to the 0.43 power\n",
      "Action: Calculator\n",
      "Action Input: 25^(0.43)\u001b[0m\n",
      "\n",
      "\u001b[1m> Entering new LLMMathChain chain...\u001b[0m\n",
      "25^(0.43)\u001b[32;1m\u001b[1;3m```text\n",
      "25**(0.43)\n",
      "```\n",
      "...numexpr.evaluate(\"25**(0.43)\")...\n",
      "\u001b[0m\n",
      "Answer: \u001b[33;1m\u001b[1;3m3.991298452658078\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n",
      "\n",
      "Observation: \u001b[33;1m\u001b[1;3mAnswer: 3.991298452658078\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mI now know the final answer\n",
      "Final Answer: Camila Morrone's current age raised to the 0.43 power is approximately 3.99.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "\"Camila Morrone's current age raised to the 0.43 power is approximately 3.99.\""
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "agent.run(\"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?\")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "6f12eaf0",
   "metadata": {},
   "source": [
    "### Subclassing the BaseTool class\n",
    "\n",
    "You can also directly subclass `BaseTool`. This is useful if you want more control over the instance variables or if you want to propagate callbacks to nested chains or other tools."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "c58a7c40",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from typing import Optional, Type\n",
    "\n",
    "from langchain.callbacks.manager import AsyncCallbackManagerForToolRun, CallbackManagerForToolRun\n",
    "\n",
    "class CustomSearchTool(BaseTool):\n",
    "    name = \"custom_search\"\n",
    "    description = \"useful for when you need to answer questions about current events\"\n",
    "\n",
    "    def _run(self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None) -> str:\n",
    "        \"\"\"Use the tool.\"\"\"\n",
    "        return search.run(query)\n",
    "    \n",
    "    async def _arun(self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None) -> str:\n",
    "        \"\"\"Use the tool asynchronously.\"\"\"\n",
    "        raise NotImplementedError(\"custom_search does not support async\")\n",
    "    \n",
    "class CustomCalculatorTool(BaseTool):\n",
    "    name = \"Calculator\"\n",
    "    description = \"useful for when you need to answer questions about math\"\n",
    "    args_schema: Type[BaseModel] = CalculatorInput\n",
    "\n",
    "    def _run(self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None) -> str:\n",
    "        \"\"\"Use the tool.\"\"\"\n",
    "        return llm_math_chain.run(query)\n",
    "    \n",
    "    async def _arun(self, query: str,  run_manager: Optional[AsyncCallbackManagerForToolRun] = None) -> str:\n",
    "        \"\"\"Use the tool asynchronously.\"\"\"\n",
    "        raise NotImplementedError(\"Calculator does not support async\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "3318a46f",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "tools = [CustomSearchTool(), CustomCalculatorTool()]\n",
    "agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "6a2cebbf",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3mI need to use custom_search to find out who Leo DiCaprio's girlfriend is, and then use the Calculator to raise her age to the 0.43 power.\n",
      "Action: custom_search\n",
      "Action Input: \"Leo DiCaprio girlfriend\"\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3mAfter rumours of a romance with Gigi Hadid, the Oscar winner has seemingly moved on. First being linked to the television personality in September 2022, it appears as if his \"age bracket\" has moved up. This follows his rumoured relationship with mere 19-year-old Eden Polani.\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mI need to find out the current age of Eden Polani.\n",
      "Action: custom_search\n",
      "Action Input: \"Eden Polani age\"\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m19 years old\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mNow I can use the Calculator to raise her age to the 0.43 power.\n",
      "Action: Calculator\n",
      "Action Input: 19 ^ 0.43\u001b[0m\n",
      "\n",
      "\u001b[1m> Entering new LLMMathChain chain...\u001b[0m\n",
      "19 ^ 0.43\u001b[32;1m\u001b[1;3m```text\n",
      "19 ** 0.43\n",
      "```\n",
      "...numexpr.evaluate(\"19 ** 0.43\")...\n",
      "\u001b[0m\n",
      "Answer: \u001b[33;1m\u001b[1;3m3.547023357958959\u001b[0m\n",
      "\u001b[1m> Finished chain.\u001b[0m\n",
      "\n",
      "Observation: \u001b[33;1m\u001b[1;3mAnswer: 3.547023357958959\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mI now know the final answer.\n",
      "Final Answer: 3.547023357958959\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'3.547023357958959'"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "agent.run(\"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "824eaf74",
   "metadata": {},
   "source": [
    "## Using the `tool` decorator\n",
    "\n",
    "To make it easier to define custom tools, a `@tool` decorator is provided. This decorator can be used to quickly create a `Tool` from a simple function. The decorator uses the function name as the tool name by default, but this can be overridden by passing a string as the first argument. Additionally, the decorator will use the function's docstring as the tool's description."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "8f15307d",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from langchain.tools import tool\n",
    "\n",
    "@tool\n",
    "def search_api(query: str) -> str:\n",
    "    \"\"\"Searches the API for the query.\"\"\"\n",
    "    return f\"Results for query {query}\"\n",
    "\n",
    "search_api"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cc6ee8c1",
   "metadata": {},
   "source": [
    "You can also provide arguments like the tool name and whether to return directly."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "28cdf04d",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "@tool(\"search\", return_direct=True)\n",
    "def search_api(query: str) -> str:\n",
    "    \"\"\"Searches the API for the query.\"\"\"\n",
    "    return \"Results\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "1085a4bd",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Tool(name='search', description='search(query: str) -> str - Searches the API for the query.', args_schema=<class 'pydantic.main.SearchApi'>, return_direct=True, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x12748c4c0>, func=<function search_api at 0x16bd66310>, coroutine=None)"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "search_api"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "de34a6a3",
   "metadata": {},
   "source": [
    "You can also provide `args_schema` to provide more information about the argument"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "f3a5c106",
   "metadata": {},
   "outputs": [],
   "source": [
    "class SearchInput(BaseModel):\n",
    "    query: str = Field(description=\"should be a search query\")\n",
    "        \n",
    "@tool(\"search\", return_direct=True, args_schema=SearchInput)\n",
    "def search_api(query: str) -> str:\n",
    "    \"\"\"Searches the API for the query.\"\"\"\n",
    "    return \"Results\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "7914ba6b",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Tool(name='search', description='search(query: str) -> str - Searches the API for the query.', args_schema=<class '__main__.SearchInput'>, return_direct=True, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x12748c4c0>, func=<function search_api at 0x16bcf0ee0>, coroutine=None)"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "search_api"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "61d2e80b",
   "metadata": {},
   "source": [
    "## Custom Structured Tools\n",
    "\n",
    "If your functions require more structured arguments, you can use the `StructuredTool` class directly, or still subclass the `BaseTool` class."
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "5be41722",
   "metadata": {},
   "source": [
    "### StructuredTool dataclass\n",
    "\n",
    "To dynamically generate a structured tool from a given function, the fastest way to get started is with `StructuredTool.from_function()`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "3c070216",
   "metadata": {},
   "outputs": [],
   "source": [
    "import requests\n",
    "from langchain.tools import StructuredTool\n",
    "\n",
    "def post_message(url: str, body: dict, parameters: Optional[dict] = None) -> str:\n",
    "    \"\"\"Sends a POST request to the given url with the given body and parameters.\"\"\"\n",
    "    result = requests.post(url, json=body, params=parameters)\n",
    "    return f\"Status: {result.status_code} - {result.text}\"\n",
    "\n",
    "tool = StructuredTool.from_function(post_message)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "fb0a38eb",
   "metadata": {},
   "source": [
    "## Subclassing the BaseTool\n",
    "\n",
    "The BaseTool automatically infers the schema from the _run method's signature."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "7505c9c5",
   "metadata": {},
   "outputs": [],
   "source": [
    "from typing import Optional, Type\n",
    "\n",
    "from langchain.callbacks.manager import AsyncCallbackManagerForToolRun, CallbackManagerForToolRun\n",
    "            \n",
    "class CustomSearchTool(BaseTool):\n",
    "    name = \"custom_search\"\n",
    "    description = \"useful for when you need to answer questions about current events\"\n",
    "\n",
    "    def _run(self, query: str, engine: str = \"google\", gl: str = \"us\", hl: str = \"en\", run_manager: Optional[CallbackManagerForToolRun] = None) -> str:\n",
    "        \"\"\"Use the tool.\"\"\"\n",
    "        search_wrapper = SerpAPIWrapper(params={\"engine\": engine, \"gl\": gl, \"hl\": hl})\n",
    "        return search_wrapper.run(query)\n",
    "    \n",
    "    async def _arun(self, query: str,  engine: str = \"google\", gl: str = \"us\", hl: str = \"en\", run_manager: Optional[AsyncCallbackManagerForToolRun] = None) -> str:\n",
    "        \"\"\"Use the tool asynchronously.\"\"\"\n",
    "        raise NotImplementedError(\"custom_search does not support async\")\n",
    "\n",
    "\n",
    "\n",
    "# You can provide a custom args schema to add descriptions or custom validation\n",
    "\n",
    "class SearchSchema(BaseModel):\n",
    "    query: str = Field(description=\"should be a search query\")\n",
    "    engine: str = Field(description=\"should be a search engine\")\n",
    "    gl: str = Field(description=\"should be a country code\")\n",
    "    hl: str = Field(description=\"should be a language code\")\n",
    "\n",
    "class CustomSearchTool(BaseTool):\n",
    "    name = \"custom_search\"\n",
    "    description = \"useful for when you need to answer questions about current events\"\n",
    "    args_schema: Type[SearchSchema] = SearchSchema\n",
    "\n",
    "    def _run(self, query: str, engine: str = \"google\", gl: str = \"us\", hl: str = \"en\", run_manager: Optional[CallbackManagerForToolRun] = None) -> str:\n",
    "        \"\"\"Use the tool.\"\"\"\n",
    "        search_wrapper = SerpAPIWrapper(params={\"engine\": engine, \"gl\": gl, \"hl\": hl})\n",
    "        return search_wrapper.run(query)\n",
    "    \n",
    "    async def _arun(self, query: str,  engine: str = \"google\", gl: str = \"us\", hl: str = \"en\", run_manager: Optional[AsyncCallbackManagerForToolRun] = None) -> str:\n",
    "        \"\"\"Use the tool asynchronously.\"\"\"\n",
    "        raise NotImplementedError(\"custom_search does not support async\")\n",
    "    \n",
    "    "
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "7d68b0ac",
   "metadata": {},
   "source": [
    "## Using the decorator\n",
    "\n",
    "The `tool` decorator creates a structured tool automatically if the signature has multiple arguments."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "38d11416",
   "metadata": {},
   "outputs": [],
   "source": [
    "import requests\n",
    "from langchain.tools import tool\n",
    "\n",
    "@tool\n",
    "def post_message(url: str, body: dict, parameters: Optional[dict] = None) -> str:\n",
    "    \"\"\"Sends a POST request to the given url with the given body and parameters.\"\"\"\n",
    "    result = requests.post(url, json=body, params=parameters)\n",
    "    return f\"Status: {result.status_code} - {result.text}\""
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "1d0430d6",
   "metadata": {},
   "source": [
    "## Modify existing tools\n",
    "\n",
    "Now, we show how to load existing tools and modify them directly. In the example below, we do something really simple and change the Search tool to have the name `Google Search`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "79213f40",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.agents import load_tools"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "e1067dcb",
   "metadata": {},
   "outputs": [],
   "source": [
    "tools = load_tools([\"serpapi\", \"llm-math\"], llm=llm)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "6c66ffe8",
   "metadata": {},
   "outputs": [],
   "source": [
    "tools[0].name = \"Google Search\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "f45b5bc3",
   "metadata": {},
   "outputs": [],
   "source": [
    "agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "565e2b9b",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3mI need to find out Leo DiCaprio's girlfriend's name and her age.\n",
      "Action: Google Search\n",
      "Action Input: \"Leo DiCaprio girlfriend\"\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3mAfter rumours of a romance with Gigi Hadid, the Oscar winner has seemingly moved on. First being linked to the television personality in September 2022, it appears as if his \"age bracket\" has moved up. This follows his rumoured relationship with mere 19-year-old Eden Polani.\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mI still need to find out his current girlfriend's name and her age.\n",
      "Action: Google Search\n",
      "Action Input: \"Leo DiCaprio current girlfriend age\"\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3mLeonardo DiCaprio has been linked with 19-year-old model Eden Polani, continuing the rumour that he doesn't date any women over the age of ...\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mI need to find out the age of Eden Polani.\n",
      "Action: Calculator\n",
      "Action Input: 19^(0.43)\u001b[0m\n",
      "Observation: \u001b[33;1m\u001b[1;3mAnswer: 3.547023357958959\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mI now know the final answer.\n",
      "Final Answer: The age of Leo DiCaprio's girlfriend raised to the 0.43 power is approximately 3.55.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "\"The age of Leo DiCaprio's girlfriend raised to the 0.43 power is approximately 3.55.\""
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "agent.run(\"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "376813ed",
   "metadata": {},
   "source": [
    "## Defining the priorities among Tools\n",
    "When you made a Custom tool, you may want the Agent to use the custom tool more than normal tools.\n",
    "\n",
    "For example, you made a custom tool, which gets information on music from your database. When a user wants information on songs, You want the Agent to use  `the custom tool` more than the normal `Search tool`. But the Agent might prioritize a normal Search tool.\n",
    "\n",
    "This can be accomplished by adding a statement such as `Use this more than the normal search if the question is about Music, like 'who is the singer of yesterday?' or 'what is the most popular song in 2022?'` to the description.\n",
    "\n",
    "An example is below."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "3450512e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Import things that are needed generically\n",
    "from langchain.agents import initialize_agent, Tool\n",
    "from langchain.agents import AgentType\n",
    "from langchain.llms import OpenAI\n",
    "from langchain import LLMMathChain, SerpAPIWrapper\n",
    "search = SerpAPIWrapper()\n",
    "tools = [\n",
    "    Tool(\n",
    "        name = \"Search\",\n",
    "        func=search.run,\n",
    "        description=\"useful for when you need to answer questions about current events\"\n",
    "    ),\n",
    "    Tool(\n",
    "        name=\"Music Search\",\n",
    "        func=lambda x: \"'All I Want For Christmas Is You' by Mariah Carey.\", #Mock Function\n",
    "        description=\"A Music search engine. Use this more than the normal search if the question is about Music, like 'who is the singer of yesterday?' or 'what is the most popular song in 2022?'\",\n",
    "    )\n",
    "]\n",
    "\n",
    "agent = initialize_agent(tools, OpenAI(temperature=0), agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "4b9a7849",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3m I should use a music search engine to find the answer\n",
      "Action: Music Search\n",
      "Action Input: most famous song of christmas\u001b[0m\u001b[33;1m\u001b[1;3m'All I Want For Christmas Is You' by Mariah Carey.\u001b[0m\u001b[32;1m\u001b[1;3m I now know the final answer\n",
      "Final Answer: 'All I Want For Christmas Is You' by Mariah Carey.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "\"'All I Want For Christmas Is You' by Mariah Carey.\""
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "agent.run(\"what is the most famous song of christmas\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bc477d43",
   "metadata": {},
   "source": [
    "## Using tools to return directly\n",
    "Often, it can be desirable to have a tool output returned directly to the user, if it’s called. You can do this easily with LangChain by setting the return_direct flag for a tool to be True."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "3bb6185f",
   "metadata": {},
   "outputs": [],
   "source": [
    "llm_math_chain = LLMMathChain(llm=llm)\n",
    "tools = [\n",
    "    Tool(\n",
    "        name=\"Calculator\",\n",
    "        func=llm_math_chain.run,\n",
    "        description=\"useful for when you need to answer questions about math\",\n",
    "        return_direct=True\n",
    "    )\n",
    "]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "113ddb84",
   "metadata": {},
   "outputs": [],
   "source": [
    "llm = OpenAI(temperature=0)\n",
    "agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "582439a6",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3m I need to calculate this\n",
      "Action: Calculator\n",
      "Action Input: 2**.12\u001b[0m\u001b[36;1m\u001b[1;3mAnswer: 1.086734862526058\u001b[0m\u001b[32;1m\u001b[1;3m\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'Answer: 1.086734862526058'"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "agent.run(\"whats 2**.12\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.2"
  },
  "vscode": {
   "interpreter": {
    "hash": "e90c8aa204a57276aa905271aff2d11799d0acb3547adabc5892e639a5e45e34"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}