File size: 16,768 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "c7ad998d",
   "metadata": {},
   "source": [
    "# Natural Language APIs\n",
    "\n",
    "Natural Language API Toolkits (NLAToolkits) permit LangChain Agents to efficiently plan and combine calls across endpoints. This notebook demonstrates a sample composition of the Speak, Klarna, and Spoonacluar APIs.\n",
    "\n",
    "For a detailed walkthrough of the OpenAPI chains wrapped within the NLAToolkit, see the [OpenAPI Operation Chain](openapi.ipynb) notebook.\n",
    "\n",
    "### First, import dependencies and load the LLM"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "6593f793",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from typing import List, Optional\n",
    "from langchain.chains import LLMChain\n",
    "from langchain.llms import OpenAI\n",
    "from langchain.prompts import PromptTemplate\n",
    "from langchain.requests import Requests\n",
    "from langchain.tools import APIOperation, OpenAPISpec\n",
    "from langchain.agents import AgentType, Tool, initialize_agent\n",
    "from langchain.agents.agent_toolkits import NLAToolkit"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "dd720860",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# Select the LLM to use. Here, we use text-davinci-003\n",
    "llm = OpenAI(temperature=0, max_tokens=700) # You can swap between different core LLM's here."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4cadac9d",
   "metadata": {
    "tags": []
   },
   "source": [
    "### Next, load the Natural Language API Toolkits"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "6b208ab0",
   "metadata": {
    "scrolled": true,
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Attempting to load an OpenAPI 3.0.1 spec.  This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
      "Attempting to load an OpenAPI 3.0.1 spec.  This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
      "Attempting to load an OpenAPI 3.0.1 spec.  This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n"
     ]
    }
   ],
   "source": [
    "speak_toolkit = NLAToolkit.from_llm_and_url(llm, \"https://api.speak.com/openapi.yaml\")\n",
    "klarna_toolkit = NLAToolkit.from_llm_and_url(llm, \"https://www.klarna.com/us/shopping/public/openai/v0/api-docs/\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "16c7336f",
   "metadata": {},
   "source": [
    "### Create the Agent"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "730a0dc2-b4d0-46d5-a1e9-583803220973",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# Slightly tweak the instructions from the default agent\n",
    "openapi_format_instructions = \"\"\"Use the following format:\n",
    "\n",
    "Question: the input question you must answer\n",
    "Thought: you should always think about what to do\n",
    "Action: the action to take, should be one of [{tool_names}]\n",
    "Action Input: what to instruct the AI Action representative.\n",
    "Observation: The Agent's response\n",
    "... (this Thought/Action/Action Input/Observation can repeat N times)\n",
    "Thought: I now know the final answer. User can't see any of my observations, API responses, links, or tools.\n",
    "Final Answer: the final answer to the original input question with the right amount of detail\n",
    "\n",
    "When responding with your Final Answer, remember that the person you are responding to CANNOT see any of your Thought/Action/Action Input/Observations, so if there is any relevant information there you need to include it explicitly in your response.\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "40a979c3",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "natural_language_tools = speak_toolkit.get_tools() + klarna_toolkit.get_tools()\n",
    "mrkl = initialize_agent(natural_language_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, \n",
    "                        verbose=True, agent_kwargs={\"format_instructions\":openapi_format_instructions})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "794380ba",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3m I need to find out what kind of Italian clothes are available\n",
      "Action: Open_AI_Klarna_product_Api.productsUsingGET\n",
      "Action Input: Italian clothes\u001b[0m\n",
      "Observation: \u001b[31;1m\u001b[1;3mThe API response contains two products from the Alé brand in Italian Blue. The first is the Alé Colour Block Short Sleeve Jersey Men - Italian Blue, which costs $86.49, and the second is the Alé Dolid Flash Jersey Men - Italian Blue, which costs $40.00.\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I now know what kind of Italian clothes are available and how much they cost.\n",
      "Final Answer: You can buy two products from the Alé brand in Italian Blue for your end of year party. The Alé Colour Block Short Sleeve Jersey Men - Italian Blue costs $86.49, and the Alé Dolid Flash Jersey Men - Italian Blue costs $40.00.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'You can buy two products from the Alé brand in Italian Blue for your end of year party. The Alé Colour Block Short Sleeve Jersey Men - Italian Blue costs $86.49, and the Alé Dolid Flash Jersey Men - Italian Blue costs $40.00.'"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "mrkl.run(\"I have an end of year party for my Italian class and have to buy some Italian clothes for it\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c61d92a8",
   "metadata": {},
   "source": [
    "### Using Auth + Adding more Endpoints\n",
    "\n",
    "Some endpoints may require user authentication via things like access tokens. Here we show how to pass in the authentication information via the `Requests` wrapper object.\n",
    "\n",
    "Since each NLATool exposes a concisee natural language interface to its wrapped API, the top level conversational agent has an easier job incorporating each endpoint to satisfy a user's request."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f0d132cc",
   "metadata": {},
   "source": [
    "**Adding the Spoonacular endpoints.**\n",
    "\n",
    "1. Go to the [Spoonacular API Console](https://spoonacular.com/food-api/console#Profile) and make a free account.\n",
    "2. Click on `Profile` and copy your API key below."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "c2368b9c",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "spoonacular_api_key = \"\" # Copy from the API Console"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "fbd97c28-fef6-41b5-9600-a9611a32bfb3",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Attempting to load an OpenAPI 3.0.0 spec.  This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
      "Unsupported APIPropertyLocation \"header\" for parameter Content-Type. Valid values are ['path', 'query'] Ignoring optional parameter\n",
      "Unsupported APIPropertyLocation \"header\" for parameter Accept. Valid values are ['path', 'query'] Ignoring optional parameter\n",
      "Unsupported APIPropertyLocation \"header\" for parameter Content-Type. Valid values are ['path', 'query'] Ignoring optional parameter\n",
      "Unsupported APIPropertyLocation \"header\" for parameter Accept. Valid values are ['path', 'query'] Ignoring optional parameter\n",
      "Unsupported APIPropertyLocation \"header\" for parameter Content-Type. Valid values are ['path', 'query'] Ignoring optional parameter\n",
      "Unsupported APIPropertyLocation \"header\" for parameter Accept. Valid values are ['path', 'query'] Ignoring optional parameter\n",
      "Unsupported APIPropertyLocation \"header\" for parameter Content-Type. Valid values are ['path', 'query'] Ignoring optional parameter\n",
      "Unsupported APIPropertyLocation \"header\" for parameter Accept. Valid values are ['path', 'query'] Ignoring optional parameter\n",
      "Unsupported APIPropertyLocation \"header\" for parameter Content-Type. Valid values are ['path', 'query'] Ignoring optional parameter\n",
      "Unsupported APIPropertyLocation \"header\" for parameter Content-Type. Valid values are ['path', 'query'] Ignoring optional parameter\n",
      "Unsupported APIPropertyLocation \"header\" for parameter Content-Type. Valid values are ['path', 'query'] Ignoring optional parameter\n",
      "Unsupported APIPropertyLocation \"header\" for parameter Content-Type. Valid values are ['path', 'query'] Ignoring optional parameter\n",
      "Unsupported APIPropertyLocation \"header\" for parameter Accept. Valid values are ['path', 'query'] Ignoring optional parameter\n",
      "Unsupported APIPropertyLocation \"header\" for parameter Content-Type. Valid values are ['path', 'query'] Ignoring optional parameter\n",
      "Unsupported APIPropertyLocation \"header\" for parameter Accept. Valid values are ['path', 'query'] Ignoring optional parameter\n",
      "Unsupported APIPropertyLocation \"header\" for parameter Accept. Valid values are ['path', 'query'] Ignoring optional parameter\n",
      "Unsupported APIPropertyLocation \"header\" for parameter Accept. Valid values are ['path', 'query'] Ignoring optional parameter\n",
      "Unsupported APIPropertyLocation \"header\" for parameter Content-Type. Valid values are ['path', 'query'] Ignoring optional parameter\n"
     ]
    }
   ],
   "source": [
    "requests = Requests(headers={\"x-api-key\": spoonacular_api_key})\n",
    "spoonacular_toolkit = NLAToolkit.from_llm_and_url(\n",
    "    llm, \n",
    "    \"https://spoonacular.com/application/frontend/downloads/spoonacular-openapi-3.json\",\n",
    "    requests=requests,\n",
    "    max_text_length=1800, # If you want to truncate the response text\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "81a6edac",
   "metadata": {
    "scrolled": true,
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "34 tools loaded.\n"
     ]
    }
   ],
   "source": [
    "natural_language_api_tools = (speak_toolkit.get_tools() \n",
    "                              + klarna_toolkit.get_tools() \n",
    "                              + spoonacular_toolkit.get_tools()[:30]\n",
    "                             )\n",
    "print(f\"{len(natural_language_api_tools)} tools loaded.\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "831f772d-5cd1-4467-b494-a3172af2ff48",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# Create an agent with the new tools\n",
    "mrkl = initialize_agent(natural_language_api_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, \n",
    "                        verbose=True, agent_kwargs={\"format_instructions\":openapi_format_instructions})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "0385e04b",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# Make the query more complex!\n",
    "user_input = (\n",
    "    \"I'm learning Italian, and my language class is having an end of year party... \"\n",
    "    \" Could you help me find an Italian outfit to wear and\"\n",
    "    \" an appropriate recipe to prepare so I can present for the class in Italian?\"\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "6ebd3f55",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3m I need to find a recipe and an outfit that is Italian-themed.\n",
      "Action: spoonacular_API.searchRecipes\n",
      "Action Input: Italian\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3mThe API response contains 10 Italian recipes, including Turkey Tomato Cheese Pizza, Broccolini Quinoa Pilaf, Bruschetta Style Pork & Pasta, Salmon Quinoa Risotto, Italian Tuna Pasta, Roasted Brussels Sprouts With Garlic, Asparagus Lemon Risotto, Italian Steamed Artichokes, Crispy Italian Cauliflower Poppers Appetizer, and Pappa Al Pomodoro.\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I need to find an Italian-themed outfit.\n",
      "Action: Open_AI_Klarna_product_Api.productsUsingGET\n",
      "Action Input: Italian\u001b[0m\n",
      "Observation: \u001b[31;1m\u001b[1;3mI found 10 products related to 'Italian' in the API response. These products include Italian Gold Sparkle Perfectina Necklace - Gold, Italian Design Miami Cuban Link Chain Necklace - Gold, Italian Gold Miami Cuban Link Chain Necklace - Gold, Italian Gold Herringbone Necklace - Gold, Italian Gold Claddagh Ring - Gold, Italian Gold Herringbone Chain Necklace - Gold, Garmin QuickFit 22mm Italian Vacchetta Leather Band, Macy's Italian Horn Charm - Gold, Dolce & Gabbana Light Blue Italian Love Pour Homme EdT 1.7 fl oz.\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
      "Final Answer: To present for your Italian language class, you could wear an Italian Gold Sparkle Perfectina Necklace - Gold, an Italian Design Miami Cuban Link Chain Necklace - Gold, or an Italian Gold Miami Cuban Link Chain Necklace - Gold. For a recipe, you could make Turkey Tomato Cheese Pizza, Broccolini Quinoa Pilaf, Bruschetta Style Pork & Pasta, Salmon Quinoa Risotto, Italian Tuna Pasta, Roasted Brussels Sprouts With Garlic, Asparagus Lemon Risotto, Italian Steamed Artichokes, Crispy Italian Cauliflower Poppers Appetizer, or Pappa Al Pomodoro.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'To present for your Italian language class, you could wear an Italian Gold Sparkle Perfectina Necklace - Gold, an Italian Design Miami Cuban Link Chain Necklace - Gold, or an Italian Gold Miami Cuban Link Chain Necklace - Gold. For a recipe, you could make Turkey Tomato Cheese Pizza, Broccolini Quinoa Pilaf, Bruschetta Style Pork & Pasta, Salmon Quinoa Risotto, Italian Tuna Pasta, Roasted Brussels Sprouts With Garlic, Asparagus Lemon Risotto, Italian Steamed Artichokes, Crispy Italian Cauliflower Poppers Appetizer, or Pappa Al Pomodoro.'"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "mrkl.run(user_input)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a2959462",
   "metadata": {},
   "source": [
    "## Thank you!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "6fcda5f0",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"In Italian, you can say 'Buon appetito' to someone to wish them to enjoy their meal. This phrase is commonly used in Italy when someone is about to eat, often at the beginning of a meal. It's similar to saying 'Bon appétit' in French or 'Guten Appetit' in German.\""
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "natural_language_api_tools[1].run(\"Tell the LangChain audience to 'enjoy the meal' in Italian, please!\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ab366dc0",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}