File size: 41,585 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "85fb2c03-ab88-4c8c-97e3-a7f2954555ab",
   "metadata": {},
   "source": [
    "# OpenAPI agents\n",
    "\n",
    "We can construct agents to consume arbitrary APIs, here APIs conformant to the OpenAPI/Swagger specification."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a389367b",
   "metadata": {},
   "source": [
    "## 1st example: hierarchical planning agent\n",
    "\n",
    "In this example, we'll consider an approach called hierarchical planning, common in robotics and appearing in recent works for LLMs X robotics. We'll see it's a viable approach to start working with a massive API spec AND to assist with user queries that require multiple steps against the API.\n",
    "\n",
    "The idea is simple: to get coherent agent behavior over long sequences behavior & to save on tokens, we'll separate concerns: a \"planner\" will be responsible for what endpoints to call and a \"controller\" will be responsible for how to call them.\n",
    "\n",
    "In the initial implementation, the planner is an LLM chain that has the name and a short description for each endpoint in context. The controller is an LLM agent that is instantiated with documentation for only the endpoints for a particular plan. There's a lot left to get this working very robustly :)\n",
    "\n",
    "---"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4b6ecf6e",
   "metadata": {},
   "source": [
    "### To start, let's collect some OpenAPI specs."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "0adf3537",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os, yaml"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "eb15cea0",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "--2023-03-31 15:45:56--  https://raw.githubusercontent.com/openai/openai-openapi/master/openapi.yaml\n",
      "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133, 185.199.109.133, 185.199.111.133, ...\n",
      "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.110.133|:443... connected.\n",
      "HTTP request sent, awaiting response... 200 OK\n",
      "Length: 122995 (120K) [text/plain]\n",
      "Saving to: ‘openapi.yaml’\n",
      "\n",
      "openapi.yaml        100%[===================>] 120.11K  --.-KB/s    in 0.01s   \n",
      "\n",
      "2023-03-31 15:45:56 (10.4 MB/s) - ‘openapi.yaml’ saved [122995/122995]\n",
      "\n",
      "--2023-03-31 15:45:57--  https://www.klarna.com/us/shopping/public/openai/v0/api-docs\n",
      "Resolving www.klarna.com (www.klarna.com)... 52.84.150.34, 52.84.150.46, 52.84.150.61, ...\n",
      "Connecting to www.klarna.com (www.klarna.com)|52.84.150.34|:443... connected.\n",
      "HTTP request sent, awaiting response... 200 OK\n",
      "Length: unspecified [application/json]\n",
      "Saving to: ‘api-docs’\n",
      "\n",
      "api-docs                [ <=>                ]   1.87K  --.-KB/s    in 0s      \n",
      "\n",
      "2023-03-31 15:45:57 (261 MB/s) - ‘api-docs’ saved [1916]\n",
      "\n",
      "--2023-03-31 15:45:57--  https://raw.githubusercontent.com/APIs-guru/openapi-directory/main/APIs/spotify.com/1.0.0/openapi.yaml\n",
      "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133, 185.199.109.133, 185.199.111.133, ...\n",
      "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.110.133|:443... connected.\n",
      "HTTP request sent, awaiting response... 200 OK\n",
      "Length: 286747 (280K) [text/plain]\n",
      "Saving to: ‘openapi.yaml’\n",
      "\n",
      "openapi.yaml        100%[===================>] 280.03K  --.-KB/s    in 0.02s   \n",
      "\n",
      "2023-03-31 15:45:58 (13.3 MB/s) - ‘openapi.yaml’ saved [286747/286747]\n",
      "\n"
     ]
    }
   ],
   "source": [
    "!wget https://raw.githubusercontent.com/openai/openai-openapi/master/openapi.yaml\n",
    "!mv openapi.yaml openai_openapi.yaml\n",
    "!wget https://www.klarna.com/us/shopping/public/openai/v0/api-docs\n",
    "!mv api-docs klarna_openapi.yaml\n",
    "!wget https://raw.githubusercontent.com/APIs-guru/openapi-directory/main/APIs/spotify.com/1.0.0/openapi.yaml\n",
    "!mv openapi.yaml spotify_openapi.yaml"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "690a35bf",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.agents.agent_toolkits.openapi.spec import reduce_openapi_spec"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "69a8e1b9",
   "metadata": {},
   "outputs": [],
   "source": [
    "with open(\"openai_openapi.yaml\") as f:\n",
    "    raw_openai_api_spec = yaml.load(f, Loader=yaml.Loader)\n",
    "openai_api_spec = reduce_openapi_spec(raw_openai_api_spec)\n",
    "    \n",
    "with open(\"klarna_openapi.yaml\") as f:\n",
    "    raw_klarna_api_spec = yaml.load(f, Loader=yaml.Loader)\n",
    "klarna_api_spec = reduce_openapi_spec(raw_klarna_api_spec)\n",
    "\n",
    "with open(\"spotify_openapi.yaml\") as f:\n",
    "    raw_spotify_api_spec = yaml.load(f, Loader=yaml.Loader)\n",
    "spotify_api_spec = reduce_openapi_spec(raw_spotify_api_spec)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ba833d49",
   "metadata": {},
   "source": [
    "---\n",
    "\n",
    "We'll work with the Spotify API as one of the examples of a somewhat complex API. There's a bit of auth-related setup to do if you want to replicate this.\n",
    "\n",
    "- You'll have to set up an application in the Spotify developer console, documented [here](https://developer.spotify.com/documentation/general/guides/authorization/), to get credentials: `CLIENT_ID`, `CLIENT_SECRET`, and `REDIRECT_URI`.\n",
    "- To get an access tokens (and keep them fresh), you can implement the oauth flows, or you can use `spotipy`. If you've set your Spotify creedentials as environment variables `SPOTIPY_CLIENT_ID`, `SPOTIPY_CLIENT_SECRET`, and `SPOTIPY_REDIRECT_URI`, you can use the helper functions below:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "a82c2cfa",
   "metadata": {},
   "outputs": [],
   "source": [
    "import spotipy.util as util\n",
    "from langchain.requests import RequestsWrapper\n",
    "\n",
    "def construct_spotify_auth_headers(raw_spec: dict):\n",
    "    scopes = list(raw_spec['components']['securitySchemes']['oauth_2_0']['flows']['authorizationCode']['scopes'].keys())\n",
    "    access_token = util.prompt_for_user_token(scope=','.join(scopes))\n",
    "    return {\n",
    "        'Authorization': f'Bearer {access_token}'\n",
    "    }\n",
    "\n",
    "# Get API credentials.\n",
    "headers = construct_spotify_auth_headers(raw_spotify_api_spec)\n",
    "requests_wrapper = RequestsWrapper(headers=headers)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "76349780",
   "metadata": {},
   "source": [
    "### How big is this spec?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "2a93271e",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "63"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "endpoints = [\n",
    "    (route, operation)\n",
    "    for route, operations in raw_spotify_api_spec[\"paths\"].items()\n",
    "    for operation in operations\n",
    "    if operation in [\"get\", \"post\"]\n",
    "]\n",
    "len(endpoints)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "eb829190",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "80326"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import tiktoken\n",
    "enc = tiktoken.encoding_for_model('text-davinci-003')\n",
    "def count_tokens(s): return len(enc.encode(s))\n",
    "\n",
    "count_tokens(yaml.dump(raw_spotify_api_spec))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cbc4964e",
   "metadata": {},
   "source": [
    "### Let's see some examples!\n",
    "\n",
    "Starting with GPT-4. (Some robustness iterations under way for GPT-3 family.)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "7f42ee84",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/jeremywelborn/src/langchain/langchain/llms/openai.py:169: UserWarning: You are trying to use a chat model. This way of initializing it is no longer supported. Instead, please use: `from langchain.chat_models import ChatOpenAI`\n",
      "  warnings.warn(\n",
      "/Users/jeremywelborn/src/langchain/langchain/llms/openai.py:608: UserWarning: You are trying to use a chat model. This way of initializing it is no longer supported. Instead, please use: `from langchain.chat_models import ChatOpenAI`\n",
      "  warnings.warn(\n"
     ]
    }
   ],
   "source": [
    "from langchain.llms.openai import OpenAI\n",
    "from langchain.agents.agent_toolkits.openapi import planner\n",
    "llm = OpenAI(model_name=\"gpt-4\", temperature=0.0)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "38762cc0",
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3mAction: api_planner\n",
      "Action Input: I need to find the right API calls to create a playlist with the first song from Kind of Blue and name it Machine Blues\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m1. GET /search to search for the album \"Kind of Blue\"\n",
      "2. GET /albums/{id}/tracks to get the tracks from the \"Kind of Blue\" album\n",
      "3. GET /me to get the current user's information\n",
      "4. POST /users/{user_id}/playlists to create a new playlist named \"Machine Blues\" for the current user\n",
      "5. POST /playlists/{playlist_id}/tracks to add the first song from \"Kind of Blue\" to the \"Machine Blues\" playlist\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mI have the plan, now I need to execute the API calls.\n",
      "Action: api_controller\n",
      "Action Input: 1. GET /search to search for the album \"Kind of Blue\"\n",
      "2. GET /albums/{id}/tracks to get the tracks from the \"Kind of Blue\" album\n",
      "3. GET /me to get the current user's information\n",
      "4. POST /users/{user_id}/playlists to create a new playlist named \"Machine Blues\" for the current user\n",
      "5. POST /playlists/{playlist_id}/tracks to add the first song from \"Kind of Blue\" to the \"Machine Blues\" playlist\u001b[0m\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3mAction: requests_get\n",
      "Action Input: {\"url\": \"https://api.spotify.com/v1/search?q=Kind%20of%20Blue&type=album\", \"output_instructions\": \"Extract the id of the first album in the search results\"}\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m1weenld61qoidwYuZ1GESA\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mAction: requests_get\n",
      "Action Input: {\"url\": \"https://api.spotify.com/v1/albums/1weenld61qoidwYuZ1GESA/tracks\", \"output_instructions\": \"Extract the id of the first track in the album\"}\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m7q3kkfAVpmcZ8g6JUThi3o\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mAction: requests_get\n",
      "Action Input: {\"url\": \"https://api.spotify.com/v1/me\", \"output_instructions\": \"Extract the id of the current user\"}\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m22rhrz4m4kvpxlsb5hezokzwi\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mAction: requests_post\n",
      "Action Input: {\"url\": \"https://api.spotify.com/v1/users/22rhrz4m4kvpxlsb5hezokzwi/playlists\", \"data\": {\"name\": \"Machine Blues\"}, \"output_instructions\": \"Extract the id of the created playlist\"}\u001b[0m\n",
      "Observation: \u001b[33;1m\u001b[1;3m7lzoEi44WOISnFYlrAIqyX\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mAction: requests_post\n",
      "Action Input: {\"url\": \"https://api.spotify.com/v1/playlists/7lzoEi44WOISnFYlrAIqyX/tracks\", \"data\": {\"uris\": [\"spotify:track:7q3kkfAVpmcZ8g6JUThi3o\"]}, \"output_instructions\": \"Confirm that the track was added to the playlist\"}\n",
      "\u001b[0m\n",
      "Observation: \u001b[33;1m\u001b[1;3mThe track was added to the playlist, confirmed by the snapshot_id: MiwxODMxNTMxZTFlNzg3ZWFlZmMxYTlmYWQyMDFiYzUwNDEwMTAwZmE1.\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mI am finished executing the plan.\n",
      "Final Answer: The first song from the \"Kind of Blue\" album has been added to the \"Machine Blues\" playlist.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n",
      "\n",
      "Observation: \u001b[33;1m\u001b[1;3mThe first song from the \"Kind of Blue\" album has been added to the \"Machine Blues\" playlist.\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mI am finished executing the plan and have created the playlist with the first song from Kind of Blue.\n",
      "Final Answer: I have created a playlist called \"Machine Blues\" with the first song from the \"Kind of Blue\" album.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'I have created a playlist called \"Machine Blues\" with the first song from the \"Kind of Blue\" album.'"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "spotify_agent = planner.create_openapi_agent(spotify_api_spec, requests_wrapper, llm)\n",
    "user_query = \"make me a playlist with the first song from kind of blue. call it machine blues.\"\n",
    "spotify_agent.run(user_query)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "96184181",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3mAction: api_planner\n",
      "Action Input: I need to find the right API calls to get a blues song recommendation for the user\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m1. GET /me to get the current user's information\n",
      "2. GET /recommendations/available-genre-seeds to retrieve a list of available genres\n",
      "3. GET /recommendations with the seed_genre parameter set to \"blues\" to get a blues song recommendation for the user\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mI have the plan, now I need to execute the API calls.\n",
      "Action: api_controller\n",
      "Action Input: 1. GET /me to get the current user's information\n",
      "2. GET /recommendations/available-genre-seeds to retrieve a list of available genres\n",
      "3. GET /recommendations with the seed_genre parameter set to \"blues\" to get a blues song recommendation for the user\u001b[0m\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3mAction: requests_get\n",
      "Action Input: {\"url\": \"https://api.spotify.com/v1/me\", \"output_instructions\": \"Extract the user's id and username\"}\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3mID: 22rhrz4m4kvpxlsb5hezokzwi, Username: Jeremy Welborn\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mAction: requests_get\n",
      "Action Input: {\"url\": \"https://api.spotify.com/v1/recommendations/available-genre-seeds\", \"output_instructions\": \"Extract the list of available genres\"}\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3macoustic, afrobeat, alt-rock, alternative, ambient, anime, black-metal, bluegrass, blues, bossanova, brazil, breakbeat, british, cantopop, chicago-house, children, chill, classical, club, comedy, country, dance, dancehall, death-metal, deep-house, detroit-techno, disco, disney, drum-and-bass, dub, dubstep, edm, electro, electronic, emo, folk, forro, french, funk, garage, german, gospel, goth, grindcore, groove, grunge, guitar, happy, hard-rock, hardcore, hardstyle, heavy-metal, hip-hop, holidays, honky-tonk, house, idm, indian, indie, indie-pop, industrial, iranian, j-dance, j-idol, j-pop, j-rock, jazz, k-pop, kids, latin, latino, malay, mandopop, metal, metal-misc, metalcore, minimal-techno, movies, mpb, new-age, new-release, opera, pagode, party, philippines-\u001b[0m\n",
      "Thought:"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Retrying langchain.llms.openai.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised RateLimitError: That model is currently overloaded with other requests. You can retry your request, or contact us through our help center at help.openai.com if the error persists. (Please include the request ID 2167437a0072228238f3c0c5b3882764 in your message.).\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[32;1m\u001b[1;3mAction: requests_get\n",
      "Action Input: {\"url\": \"https://api.spotify.com/v1/recommendations?seed_genres=blues\", \"output_instructions\": \"Extract the list of recommended tracks with their ids and names\"}\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m[\n",
      "  {\n",
      "    id: '03lXHmokj9qsXspNsPoirR',\n",
      "    name: 'Get Away Jordan'\n",
      "  }\n",
      "]\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mI am finished executing the plan.\n",
      "Final Answer: The recommended blues song for user Jeremy Welborn (ID: 22rhrz4m4kvpxlsb5hezokzwi) is \"Get Away Jordan\" with the track ID: 03lXHmokj9qsXspNsPoirR.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n",
      "\n",
      "Observation: \u001b[33;1m\u001b[1;3mThe recommended blues song for user Jeremy Welborn (ID: 22rhrz4m4kvpxlsb5hezokzwi) is \"Get Away Jordan\" with the track ID: 03lXHmokj9qsXspNsPoirR.\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mI am finished executing the plan and have the information the user asked for.\n",
      "Final Answer: The recommended blues song for you is \"Get Away Jordan\" with the track ID: 03lXHmokj9qsXspNsPoirR.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'The recommended blues song for you is \"Get Away Jordan\" with the track ID: 03lXHmokj9qsXspNsPoirR.'"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "user_query = \"give me a song I'd like, make it blues-ey\"\n",
    "spotify_agent.run(user_query)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d5317926",
   "metadata": {},
   "source": [
    "#### Try another API.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "06c3d6a8",
   "metadata": {},
   "outputs": [],
   "source": [
    "headers = {\n",
    "    \"Authorization\": f\"Bearer {os.getenv('OPENAI_API_KEY')}\"\n",
    "}\n",
    "openai_requests_wrapper=RequestsWrapper(headers=headers)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "id": "3a9cc939",
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3mAction: api_planner\n",
      "Action Input: I need to find the right API calls to generate a short piece of advice\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m1. GET /engines to retrieve the list of available engines\n",
      "2. POST /completions with the selected engine and a prompt for generating a short piece of advice\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mI have the plan, now I need to execute the API calls.\n",
      "Action: api_controller\n",
      "Action Input: 1. GET /engines to retrieve the list of available engines\n",
      "2. POST /completions with the selected engine and a prompt for generating a short piece of advice\u001b[0m\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3mAction: requests_get\n",
      "Action Input: {\"url\": \"https://api.openai.com/v1/engines\", \"output_instructions\": \"Extract the ids of the engines\"}\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3mbabbage, davinci, text-davinci-edit-001, babbage-code-search-code, text-similarity-babbage-001, code-davinci-edit-001, text-davinci-001, ada, babbage-code-search-text, babbage-similarity, whisper-1, code-search-babbage-text-001, text-curie-001, code-search-babbage-code-001, text-ada-001, text-embedding-ada-002, text-similarity-ada-001, curie-instruct-beta, ada-code-search-code, ada-similarity, text-davinci-003, code-search-ada-text-001, text-search-ada-query-001, davinci-search-document, ada-code-search-text, text-search-ada-doc-001, davinci-instruct-beta, text-similarity-curie-001, code-search-ada-code-001\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mI will use the \"davinci\" engine to generate a short piece of advice.\n",
      "Action: requests_post\n",
      "Action Input: {\"url\": \"https://api.openai.com/v1/completions\", \"data\": {\"engine\": \"davinci\", \"prompt\": \"Give me a short piece of advice on how to be more productive.\"}, \"output_instructions\": \"Extract the text from the first choice\"}\u001b[0m\n",
      "Observation: \u001b[33;1m\u001b[1;3m\"you must provide a model parameter\"\u001b[0m\n",
      "Thought:!! Could not _extract_tool_and_input from \"I cannot finish executing the plan without knowing how to provide the model parameter correctly.\" in _get_next_action\n",
      "\u001b[32;1m\u001b[1;3mI cannot finish executing the plan without knowing how to provide the model parameter correctly.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n",
      "\n",
      "Observation: \u001b[33;1m\u001b[1;3mI need more information on how to provide the model parameter correctly in the POST request to generate a short piece of advice.\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mI need to adjust my plan to include the model parameter in the POST request.\n",
      "Action: api_planner\n",
      "Action Input: I need to find the right API calls to generate a short piece of advice, including the model parameter in the POST request\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m1. GET /models to retrieve the list of available models\n",
      "2. Choose a suitable model from the list\n",
      "3. POST /completions with the chosen model as a parameter to generate a short piece of advice\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mI have an updated plan, now I need to execute the API calls.\n",
      "Action: api_controller\n",
      "Action Input: 1. GET /models to retrieve the list of available models\n",
      "2. Choose a suitable model from the list\n",
      "3. POST /completions with the chosen model as a parameter to generate a short piece of advice\u001b[0m\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3mAction: requests_get\n",
      "Action Input: {\"url\": \"https://api.openai.com/v1/models\", \"output_instructions\": \"Extract the ids of the available models\"}\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3mbabbage, davinci, text-davinci-edit-001, babbage-code-search-code, text-similarity-babbage-001, code-davinci-edit-001, text-davinci-edit-001, ada\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mAction: requests_post\n",
      "Action Input: {\"url\": \"https://api.openai.com/v1/completions\", \"data\": {\"model\": \"davinci\", \"prompt\": \"Give me a short piece of advice on how to improve communication skills.\"}, \"output_instructions\": \"Extract the text from the first choice\"}\u001b[0m\n",
      "Observation: \u001b[33;1m\u001b[1;3m\"I'd like to broaden my horizon.\\n\\nI was trying to\"\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mI cannot finish executing the plan without knowing some other information.\n",
      "\n",
      "Final Answer: The generated text is not a piece of advice on improving communication skills. I would need to retry the API call with a different prompt or model to get a more relevant response.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n",
      "\n",
      "Observation: \u001b[33;1m\u001b[1;3mThe generated text is not a piece of advice on improving communication skills. I would need to retry the API call with a different prompt or model to get a more relevant response.\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mI need to adjust my plan to include a more specific prompt for generating a short piece of advice on improving communication skills.\n",
      "Action: api_planner\n",
      "Action Input: I need to find the right API calls to generate a short piece of advice on improving communication skills, including the model parameter in the POST request\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m1. GET /models to retrieve the list of available models\n",
      "2. Choose a suitable model for generating text (e.g., text-davinci-002)\n",
      "3. POST /completions with the chosen model and a prompt related to improving communication skills to generate a short piece of advice\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mI have an updated plan, now I need to execute the API calls.\n",
      "Action: api_controller\n",
      "Action Input: 1. GET /models to retrieve the list of available models\n",
      "2. Choose a suitable model for generating text (e.g., text-davinci-002)\n",
      "3. POST /completions with the chosen model and a prompt related to improving communication skills to generate a short piece of advice\u001b[0m\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3mAction: requests_get\n",
      "Action Input: {\"url\": \"https://api.openai.com/v1/models\", \"output_instructions\": \"Extract the names of the models\"}\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3mbabbage, davinci, text-davinci-edit-001, babbage-code-search-code, text-similarity-babbage-001, code-davinci-edit-001, text-davinci-edit-001, ada\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mAction: requests_post\n",
      "Action Input: {\"url\": \"https://api.openai.com/v1/completions\", \"data\": {\"model\": \"text-davinci-002\", \"prompt\": \"Give a short piece of advice on how to improve communication skills\"}, \"output_instructions\": \"Extract the text from the first choice\"}\u001b[0m\n",
      "Observation: \u001b[33;1m\u001b[1;3m\"Some basic advice for improving communication skills would be to make sure to listen\"\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mI am finished executing the plan.\n",
      "\n",
      "Final Answer: Some basic advice for improving communication skills would be to make sure to listen.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n",
      "\n",
      "Observation: \u001b[33;1m\u001b[1;3mSome basic advice for improving communication skills would be to make sure to listen.\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3mI am finished executing the plan and have the information the user asked for.\n",
      "Final Answer: A short piece of advice for improving communication skills is to make sure to listen.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'A short piece of advice for improving communication skills is to make sure to listen.'"
      ]
     },
     "execution_count": 28,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Meta!\n",
    "llm = OpenAI(model_name=\"gpt-4\", temperature=0.25)\n",
    "openai_agent = planner.create_openapi_agent(openai_api_spec, openai_requests_wrapper, llm)\n",
    "user_query = \"generate a short piece of advice\"\n",
    "openai_agent.run(user_query)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f32bc6ec",
   "metadata": {},
   "source": [
    "Takes awhile to get there!"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "461229e4",
   "metadata": {},
   "source": [
    "## 2nd example: \"json explorer\" agent\n",
    "\n",
    "Here's an agent that's not particularly practical, but neat! The agent has access to 2 toolkits. One comprises tools to interact with json: one tool to list the keys of a json object and another tool to get the value for a given key. The other toolkit comprises `requests` wrappers to send GET and POST requests. This agent consumes a lot calls to the language model, but does a surprisingly decent job.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "id": "f8dfa1d3",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.agents import create_openapi_agent\n",
    "from langchain.agents.agent_toolkits import OpenAPIToolkit\n",
    "from langchain.llms.openai import OpenAI\n",
    "from langchain.requests import TextRequestsWrapper\n",
    "from langchain.tools.json.tool import JsonSpec"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "id": "9ecd1ba0-3937-4359-a41e-68605f0596a1",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "with open(\"openai_openapi.yaml\") as f:\n",
    "    data = yaml.load(f, Loader=yaml.FullLoader)\n",
    "json_spec=JsonSpec(dict_=data, max_value_length=4000)\n",
    "\n",
    "\n",
    "openapi_toolkit = OpenAPIToolkit.from_llm(OpenAI(temperature=0), json_spec, openai_requests_wrapper, verbose=True)\n",
    "openapi_agent_executor = create_openapi_agent(\n",
    "    llm=OpenAI(temperature=0),\n",
    "    toolkit=openapi_toolkit,\n",
    "    verbose=True\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "id": "548db7f7-337b-4ba8-905c-e7fd58c01799",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3mAction: json_explorer\n",
      "Action Input: What is the base url for the API?\u001b[0m\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3mAction: json_spec_list_keys\n",
      "Action Input: data\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m['openapi', 'info', 'servers', 'tags', 'paths', 'components', 'x-oaiMeta']\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I should look at the servers key to see what the base url is\n",
      "Action: json_spec_list_keys\n",
      "Action Input: data[\"servers\"][0]\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3mValueError('Value at path `data[\"servers\"][0]` is not a dict, get the value directly.')\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I should get the value of the servers key\n",
      "Action: json_spec_get_value\n",
      "Action Input: data[\"servers\"][0]\u001b[0m\n",
      "Observation: \u001b[33;1m\u001b[1;3m{'url': 'https://api.openai.com/v1'}\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I now know the base url for the API\n",
      "Final Answer: The base url for the API is https://api.openai.com/v1\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n",
      "\n",
      "Observation: \u001b[33;1m\u001b[1;3mThe base url for the API is https://api.openai.com/v1\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I should find the path for the /completions endpoint.\n",
      "Action: json_explorer\n",
      "Action Input: What is the path for the /completions endpoint?\u001b[0m\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3mAction: json_spec_list_keys\n",
      "Action Input: data\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m['openapi', 'info', 'servers', 'tags', 'paths', 'components', 'x-oaiMeta']\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I should look at the paths key to see what endpoints exist\n",
      "Action: json_spec_list_keys\n",
      "Action Input: data[\"paths\"]\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m['/engines', '/engines/{engine_id}', '/completions', '/chat/completions', '/edits', '/images/generations', '/images/edits', '/images/variations', '/embeddings', '/audio/transcriptions', '/audio/translations', '/engines/{engine_id}/search', '/files', '/files/{file_id}', '/files/{file_id}/content', '/answers', '/classifications', '/fine-tunes', '/fine-tunes/{fine_tune_id}', '/fine-tunes/{fine_tune_id}/cancel', '/fine-tunes/{fine_tune_id}/events', '/models', '/models/{model}', '/moderations']\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I now know the path for the /completions endpoint\n",
      "Final Answer: The path for the /completions endpoint is data[\"paths\"][2]\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n",
      "\n",
      "Observation: \u001b[33;1m\u001b[1;3mThe path for the /completions endpoint is data[\"paths\"][2]\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I should find the required parameters for the POST request.\n",
      "Action: json_explorer\n",
      "Action Input: What are the required parameters for a POST request to the /completions endpoint?\u001b[0m\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "\u001b[32;1m\u001b[1;3mAction: json_spec_list_keys\n",
      "Action Input: data\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m['openapi', 'info', 'servers', 'tags', 'paths', 'components', 'x-oaiMeta']\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I should look at the paths key to see what endpoints exist\n",
      "Action: json_spec_list_keys\n",
      "Action Input: data[\"paths\"]\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m['/engines', '/engines/{engine_id}', '/completions', '/chat/completions', '/edits', '/images/generations', '/images/edits', '/images/variations', '/embeddings', '/audio/transcriptions', '/audio/translations', '/engines/{engine_id}/search', '/files', '/files/{file_id}', '/files/{file_id}/content', '/answers', '/classifications', '/fine-tunes', '/fine-tunes/{fine_tune_id}', '/fine-tunes/{fine_tune_id}/cancel', '/fine-tunes/{fine_tune_id}/events', '/models', '/models/{model}', '/moderations']\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I should look at the /completions endpoint to see what parameters are required\n",
      "Action: json_spec_list_keys\n",
      "Action Input: data[\"paths\"][\"/completions\"]\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m['post']\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I should look at the post key to see what parameters are required\n",
      "Action: json_spec_list_keys\n",
      "Action Input: data[\"paths\"][\"/completions\"][\"post\"]\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m['operationId', 'tags', 'summary', 'requestBody', 'responses', 'x-oaiMeta']\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I should look at the requestBody key to see what parameters are required\n",
      "Action: json_spec_list_keys\n",
      "Action Input: data[\"paths\"][\"/completions\"][\"post\"][\"requestBody\"]\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m['required', 'content']\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I should look at the content key to see what parameters are required\n",
      "Action: json_spec_list_keys\n",
      "Action Input: data[\"paths\"][\"/completions\"][\"post\"][\"requestBody\"][\"content\"]\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m['application/json']\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I should look at the application/json key to see what parameters are required\n",
      "Action: json_spec_list_keys\n",
      "Action Input: data[\"paths\"][\"/completions\"][\"post\"][\"requestBody\"][\"content\"][\"application/json\"]\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m['schema']\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I should look at the schema key to see what parameters are required\n",
      "Action: json_spec_list_keys\n",
      "Action Input: data[\"paths\"][\"/completions\"][\"post\"][\"requestBody\"][\"content\"][\"application/json\"][\"schema\"]\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m['$ref']\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I should look at the $ref key to see what parameters are required\n",
      "Action: json_spec_list_keys\n",
      "Action Input: data[\"paths\"][\"/completions\"][\"post\"][\"requestBody\"][\"content\"][\"application/json\"][\"schema\"][\"$ref\"]\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3mValueError('Value at path `data[\"paths\"][\"/completions\"][\"post\"][\"requestBody\"][\"content\"][\"application/json\"][\"schema\"][\"$ref\"]` is not a dict, get the value directly.')\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I should look at the $ref key to get the value directly\n",
      "Action: json_spec_get_value\n",
      "Action Input: data[\"paths\"][\"/completions\"][\"post\"][\"requestBody\"][\"content\"][\"application/json\"][\"schema\"][\"$ref\"]\u001b[0m\n",
      "Observation: \u001b[33;1m\u001b[1;3m#/components/schemas/CreateCompletionRequest\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I should look at the CreateCompletionRequest schema to see what parameters are required\n",
      "Action: json_spec_list_keys\n",
      "Action Input: data[\"components\"][\"schemas\"][\"CreateCompletionRequest\"]\u001b[0m\n",
      "Observation: \u001b[36;1m\u001b[1;3m['type', 'properties', 'required']\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I should look at the required key to see what parameters are required\n",
      "Action: json_spec_get_value\n",
      "Action Input: data[\"components\"][\"schemas\"][\"CreateCompletionRequest\"][\"required\"]\u001b[0m\n",
      "Observation: \u001b[33;1m\u001b[1;3m['model']\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
      "Final Answer: The required parameters for a POST request to the /completions endpoint are 'model'.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n",
      "\n",
      "Observation: \u001b[33;1m\u001b[1;3mThe required parameters for a POST request to the /completions endpoint are 'model'.\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I now know the parameters needed to make the request.\n",
      "Action: requests_post\n",
      "Action Input: { \"url\": \"https://api.openai.com/v1/completions\", \"data\": { \"model\": \"davinci\", \"prompt\": \"tell me a joke\" } }\u001b[0m\n",
      "Observation: \u001b[33;1m\u001b[1;3m{\"id\":\"cmpl-70Ivzip3dazrIXU8DSVJGzFJj2rdv\",\"object\":\"text_completion\",\"created\":1680307139,\"model\":\"davinci\",\"choices\":[{\"text\":\" with mummy not there”\\n\\nYou dig deep and come up with,\",\"index\":0,\"logprobs\":null,\"finish_reason\":\"length\"}],\"usage\":{\"prompt_tokens\":4,\"completion_tokens\":16,\"total_tokens\":20}}\n",
      "\u001b[0m\n",
      "Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n",
      "Final Answer: The response of the POST request is {\"id\":\"cmpl-70Ivzip3dazrIXU8DSVJGzFJj2rdv\",\"object\":\"text_completion\",\"created\":1680307139,\"model\":\"davinci\",\"choices\":[{\"text\":\" with mummy not there”\\n\\nYou dig deep and come up with,\",\"index\":0,\"logprobs\":null,\"finish_reason\":\"length\"}],\"usage\":{\"prompt_tokens\":4,\"completion_tokens\":16,\"total_tokens\":20}}\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'The response of the POST request is {\"id\":\"cmpl-70Ivzip3dazrIXU8DSVJGzFJj2rdv\",\"object\":\"text_completion\",\"created\":1680307139,\"model\":\"davinci\",\"choices\":[{\"text\":\" with mummy not there”\\\\n\\\\nYou dig deep and come up with,\",\"index\":0,\"logprobs\":null,\"finish_reason\":\"length\"}],\"usage\":{\"prompt_tokens\":4,\"completion_tokens\":16,\"total_tokens\":20}}'"
      ]
     },
     "execution_count": 33,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "openapi_agent_executor.run(\"Make a post request to openai /completions. The prompt should be 'tell me a joke.'\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}