Spaces:
Running
Running
File size: 1,023 Bytes
cfd3735 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
# PGVector
This page covers how to use the Postgres [PGVector](https://github.com/pgvector/pgvector) ecosystem within LangChain
It is broken into two parts: installation and setup, and then references to specific PGVector wrappers.
## Installation
- Install the Python package with `pip install pgvector`
## Setup
1. The first step is to create a database with the `pgvector` extension installed.
Follow the steps at [PGVector Installation Steps](https://github.com/pgvector/pgvector#installation) to install the database and the extension. The docker image is the easiest way to get started.
## Wrappers
### VectorStore
There exists a wrapper around Postgres vector databases, allowing you to use it as a vectorstore,
whether for semantic search or example selection.
To import this vectorstore:
```python
from langchain.vectorstores.pgvector import PGVector
```
### Usage
For a more detailed walkthrough of the PGVector Wrapper, see [this notebook](../modules/indexes/vectorstores/examples/pgvector.ipynb)
|