File size: 4,348 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# MLflow\n",
    "\n",
    "This notebook goes over how to track your LangChain experiments into your MLflow Server"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install azureml-mlflow\n",
    "!pip install pandas\n",
    "!pip install textstat\n",
    "!pip install spacy\n",
    "!pip install openai\n",
    "!pip install google-search-results\n",
    "!python -m spacy download en_core_web_sm"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "os.environ[\"MLFLOW_TRACKING_URI\"] = \"\"\n",
    "os.environ[\"OPENAI_API_KEY\"] = \"\"\n",
    "os.environ[\"SERPAPI_API_KEY\"] = \"\"\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.callbacks import MlflowCallbackHandler\n",
    "from langchain.llms import OpenAI"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\"\"\"Main function.\n",
    "\n",
    "This function is used to try the callback handler.\n",
    "Scenarios:\n",
    "1. OpenAI LLM\n",
    "2. Chain with multiple SubChains on multiple generations\n",
    "3. Agent with Tools\n",
    "\"\"\"\n",
    "mlflow_callback = MlflowCallbackHandler()\n",
    "llm = OpenAI(model_name=\"gpt-3.5-turbo\", temperature=0, callbacks=[mlflow_callback], verbose=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# SCENARIO 1 - LLM\n",
    "llm_result = llm.generate([\"Tell me a joke\"])\n",
    "\n",
    "mlflow_callback.flush_tracker(llm)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.prompts import PromptTemplate\n",
    "from langchain.chains import LLMChain"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# SCENARIO 2 - Chain\n",
    "template = \"\"\"You are a playwright. Given the title of play, it is your job to write a synopsis for that title.\n",
    "Title: {title}\n",
    "Playwright: This is a synopsis for the above play:\"\"\"\n",
    "prompt_template = PromptTemplate(input_variables=[\"title\"], template=template)\n",
    "synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callbacks=[mlflow_callback])\n",
    "\n",
    "test_prompts = [\n",
    "    {\n",
    "        \"title\": \"documentary about good video games that push the boundary of game design\"\n",
    "    },\n",
    "]\n",
    "synopsis_chain.apply(test_prompts)\n",
    "mlflow_callback.flush_tracker(synopsis_chain)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "_jN73xcPVEpI"
   },
   "outputs": [],
   "source": [
    "from langchain.agents import initialize_agent, load_tools\n",
    "from langchain.agents import AgentType"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "Gpq4rk6VT9cu"
   },
   "outputs": [],
   "source": [
    "# SCENARIO 3 - Agent with Tools\n",
    "tools = load_tools([\"serpapi\", \"llm-math\"], llm=llm, callbacks=[mlflow_callback])\n",
    "agent = initialize_agent(\n",
    "    tools,\n",
    "    llm,\n",
    "    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,\n",
    "    callbacks=[mlflow_callback],\n",
    "    verbose=True,\n",
    ")\n",
    "agent.run(\n",
    "    \"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?\"\n",
    ")\n",
    "mlflow_callback.flush_tracker(agent, finish=True)"
   ]
  }
 ],
 "metadata": {
  "colab": {
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}