File size: 11,559 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Comet"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "![](https://user-images.githubusercontent.com/7529846/230328046-a8b18c51-12e3-4617-9b39-97614a571a2d.png)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In this guide we will demonstrate how to track your Langchain Experiments, Evaluation Metrics, and LLM Sessions with [Comet](https://www.comet.com/site/?utm_source=langchain&utm_medium=referral&utm_campaign=comet_notebook).  \n",
    "\n",
    "<a target=\"_blank\" href=\"https://colab.research.google.com/github/hwchase17/langchain/blob/master/docs/ecosystem/comet_tracking.ipynb\">\n",
    "  <img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n",
    "</a>\n",
    "\n",
    "**Example Project:** [Comet with LangChain](https://www.comet.com/examples/comet-example-langchain/view/b5ZThK6OFdhKWVSP3fDfRtrNF/panels?utm_source=langchain&utm_medium=referral&utm_campaign=comet_notebook)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<img width=\"1280\" alt=\"comet-langchain\" src=\"https://user-images.githubusercontent.com/7529846/230326720-a9711435-9c6f-4edb-a707-94b67271ab25.png\">\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Install Comet and Dependencies"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%pip install comet_ml langchain openai google-search-results spacy textstat pandas\n",
    "\n",
    "import sys\n",
    "!{sys.executable} -m spacy download en_core_web_sm"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Initialize Comet and Set your Credentials"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can grab your [Comet API Key here](https://www.comet.com/signup?utm_source=langchain&utm_medium=referral&utm_campaign=comet_notebook) or click the link after initializing Comet"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import comet_ml\n",
    "\n",
    "comet_ml.init(project_name=\"comet-example-langchain\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Set OpenAI and SerpAPI credentials"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You will need an [OpenAI API Key](https://platform.openai.com/account/api-keys) and a [SerpAPI API Key](https://serpapi.com/dashboard) to run the following examples"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "\n",
    "os.environ[\"OPENAI_API_KEY\"] = \"...\"\n",
    "#os.environ[\"OPENAI_ORGANIZATION\"] = \"...\"\n",
    "os.environ[\"SERPAPI_API_KEY\"] = \"...\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Scenario 1: Using just an LLM"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from datetime import datetime\n",
    "\n",
    "from langchain.callbacks import CometCallbackHandler, StdOutCallbackHandler\n",
    "from langchain.llms import OpenAI\n",
    "\n",
    "comet_callback = CometCallbackHandler(\n",
    "    project_name=\"comet-example-langchain\",\n",
    "    complexity_metrics=True,\n",
    "    stream_logs=True,\n",
    "    tags=[\"llm\"],\n",
    "    visualizations=[\"dep\"],\n",
    ")\n",
    "callbacks = [StdOutCallbackHandler(), comet_callback]\n",
    "llm = OpenAI(temperature=0.9, callbacks=callbacks, verbose=True)\n",
    "\n",
    "llm_result = llm.generate([\"Tell me a joke\", \"Tell me a poem\", \"Tell me a fact\"] * 3)\n",
    "print(\"LLM result\", llm_result)\n",
    "comet_callback.flush_tracker(llm, finish=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Scenario 2: Using an LLM in a Chain"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.callbacks import CometCallbackHandler, StdOutCallbackHandler\n",
    "from langchain.chains import LLMChain\n",
    "from langchain.llms import OpenAI\n",
    "from langchain.prompts import PromptTemplate\n",
    "\n",
    "comet_callback = CometCallbackHandler(\n",
    "    complexity_metrics=True,\n",
    "    project_name=\"comet-example-langchain\",\n",
    "    stream_logs=True,\n",
    "    tags=[\"synopsis-chain\"],\n",
    ")\n",
    "callbacks = [StdOutCallbackHandler(), comet_callback]\n",
    "llm = OpenAI(temperature=0.9, callbacks=callbacks)\n",
    "\n",
    "template = \"\"\"You are a playwright. Given the title of play, it is your job to write a synopsis for that title.\n",
    "Title: {title}\n",
    "Playwright: This is a synopsis for the above play:\"\"\"\n",
    "prompt_template = PromptTemplate(input_variables=[\"title\"], template=template)\n",
    "synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callbacks=callbacks)\n",
    "\n",
    "test_prompts = [{\"title\": \"Documentary about Bigfoot in Paris\"}]\n",
    "print(synopsis_chain.apply(test_prompts))\n",
    "comet_callback.flush_tracker(synopsis_chain, finish=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Scenario 3: Using An Agent with Tools "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.agents import initialize_agent, load_tools\n",
    "from langchain.callbacks import CometCallbackHandler, StdOutCallbackHandler\n",
    "from langchain.llms import OpenAI\n",
    "\n",
    "comet_callback = CometCallbackHandler(\n",
    "    project_name=\"comet-example-langchain\",\n",
    "    complexity_metrics=True,\n",
    "    stream_logs=True,\n",
    "    tags=[\"agent\"],\n",
    ")\n",
    "callbacks = [StdOutCallbackHandler(), comet_callback]\n",
    "llm = OpenAI(temperature=0.9, callbacks=callbacks)\n",
    "\n",
    "tools = load_tools([\"serpapi\", \"llm-math\"], llm=llm, callbacks=callbacks)\n",
    "agent = initialize_agent(\n",
    "    tools,\n",
    "    llm,\n",
    "    agent=\"zero-shot-react-description\",\n",
    "    callbacks=callbacks,\n",
    "    verbose=True,\n",
    ")\n",
    "agent.run(\n",
    "    \"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?\"\n",
    ")\n",
    "comet_callback.flush_tracker(agent, finish=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Scenario 4: Using Custom Evaluation Metrics"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `CometCallbackManager` also allows you to define and use Custom Evaluation Metrics to assess generated outputs from your model. Let's take a look at how this works. \n",
    "\n",
    "\n",
    "In the snippet below, we will use the [ROUGE](https://huggingface.co/spaces/evaluate-metric/rouge) metric to evaluate the quality of a generated summary of an input prompt. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%pip install rouge-score"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from rouge_score import rouge_scorer\n",
    "\n",
    "from langchain.callbacks import CometCallbackHandler, StdOutCallbackHandler\n",
    "from langchain.chains import LLMChain\n",
    "from langchain.llms import OpenAI\n",
    "from langchain.prompts import PromptTemplate\n",
    "\n",
    "\n",
    "class Rouge:\n",
    "    def __init__(self, reference):\n",
    "        self.reference = reference\n",
    "        self.scorer = rouge_scorer.RougeScorer([\"rougeLsum\"], use_stemmer=True)\n",
    "\n",
    "    def compute_metric(self, generation, prompt_idx, gen_idx):\n",
    "        prediction = generation.text\n",
    "        results = self.scorer.score(target=self.reference, prediction=prediction)\n",
    "\n",
    "        return {\n",
    "            \"rougeLsum_score\": results[\"rougeLsum\"].fmeasure,\n",
    "            \"reference\": self.reference,\n",
    "        }\n",
    "\n",
    "\n",
    "reference = \"\"\"\n",
    "The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building.\n",
    "It was the first structure to reach a height of 300 metres.\n",
    "\n",
    "It is now taller than the Chrysler Building in New York City by 5.2 metres (17 ft)\n",
    "Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France .\n",
    "\"\"\"\n",
    "rouge_score = Rouge(reference=reference)\n",
    "\n",
    "template = \"\"\"Given the following article, it is your job to write a summary.\n",
    "Article:\n",
    "{article}\n",
    "Summary: This is the summary for the above article:\"\"\"\n",
    "prompt_template = PromptTemplate(input_variables=[\"article\"], template=template)\n",
    "\n",
    "comet_callback = CometCallbackHandler(\n",
    "    project_name=\"comet-example-langchain\",\n",
    "    complexity_metrics=False,\n",
    "    stream_logs=True,\n",
    "    tags=[\"custom_metrics\"],\n",
    "    custom_metrics=rouge_score.compute_metric,\n",
    ")\n",
    "callbacks = [StdOutCallbackHandler(), comet_callback]\n",
    "llm = OpenAI(temperature=0.9)\n",
    "\n",
    "synopsis_chain = LLMChain(llm=llm, prompt=prompt_template)\n",
    "\n",
    "test_prompts = [\n",
    "    {\n",
    "        \"article\": \"\"\"\n",
    "                 The tower is 324 metres (1,063 ft) tall, about the same height as\n",
    "                 an 81-storey building, and the tallest structure in Paris. Its base is square,\n",
    "                 measuring 125 metres (410 ft) on each side.\n",
    "                 During its construction, the Eiffel Tower surpassed the\n",
    "                 Washington Monument to become the tallest man-made structure in the world,\n",
    "                 a title it held for 41 years until the Chrysler Building\n",
    "                 in New York City was finished in 1930.\n",
    "\n",
    "                 It was the first structure to reach a height of 300 metres.\n",
    "                 Due to the addition of a broadcasting aerial at the top of the tower in 1957,\n",
    "                 it is now taller than the Chrysler Building by 5.2 metres (17 ft).\n",
    "\n",
    "                 Excluding transmitters, the Eiffel Tower is the second tallest\n",
    "                 free-standing structure in France after the Millau Viaduct.\n",
    "                 \"\"\"\n",
    "    }\n",
    "]\n",
    "print(synopsis_chain.apply(test_prompts, callbacks=callbacks))\n",
    "comet_callback.flush_tracker(synopsis_chain, finish=True)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.15"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}