File size: 5,164 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
"""Test MRKL functionality."""

from typing import Tuple

import pytest

from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.mrkl.output_parser import MRKLOutputParser
from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX
from langchain.agents.tools import Tool
from langchain.prompts import PromptTemplate
from langchain.schema import AgentAction, OutputParserException
from tests.unit_tests.llms.fake_llm import FakeLLM


def get_action_and_input(text: str) -> Tuple[str, str]:
    output = MRKLOutputParser().parse(text)
    if isinstance(output, AgentAction):
        return output.tool, str(output.tool_input)
    else:
        return "Final Answer", output.return_values["output"]


def test_get_action_and_input() -> None:
    """Test getting an action from text."""
    llm_output = (
        "Thought: I need to search for NBA\n" "Action: Search\n" "Action Input: NBA"
    )
    action, action_input = get_action_and_input(llm_output)
    assert action == "Search"
    assert action_input == "NBA"


def test_get_action_and_input_whitespace() -> None:
    """Test getting an action from text."""
    llm_output = "Thought: I need to search for NBA\nAction: Search \nAction Input: NBA"
    action, action_input = get_action_and_input(llm_output)
    assert action == "Search"
    assert action_input == "NBA"


def test_get_action_and_input_newline() -> None:
    """Test getting an action from text where Action Input is a code snippet."""
    llm_output = (
        "Now I need to write a unittest for the function.\n\n"
        "Action: Python\nAction Input:\n```\nimport unittest\n\nunittest.main()\n```"
    )
    action, action_input = get_action_and_input(llm_output)
    assert action == "Python"
    assert action_input == "```\nimport unittest\n\nunittest.main()\n```"


def test_get_action_and_input_newline_after_keyword() -> None:
    """Test getting an action and action input from the text
    when there is a new line before the action
    (after the keywords "Action:" and "Action Input:")
    """
    llm_output = """
    I can use the `ls` command to list the contents of the directory \
    and `grep` to search for the specific file.

    Action:
    Terminal

    Action Input:
    ls -l ~/.bashrc.d/
    """

    action, action_input = get_action_and_input(llm_output)
    assert action == "Terminal"
    assert action_input == "ls -l ~/.bashrc.d/\n"


def test_get_final_answer() -> None:
    """Test getting final answer."""
    llm_output = (
        "Thought: I need to search for NBA\n"
        "Action: Search\n"
        "Action Input: NBA\n"
        "Observation: founded in 1994\n"
        "Thought: I can now answer the question\n"
        "Final Answer: 1994"
    )
    action, action_input = get_action_and_input(llm_output)
    assert action == "Final Answer"
    assert action_input == "1994"


def test_get_final_answer_new_line() -> None:
    """Test getting final answer."""
    llm_output = (
        "Thought: I need to search for NBA\n"
        "Action: Search\n"
        "Action Input: NBA\n"
        "Observation: founded in 1994\n"
        "Thought: I can now answer the question\n"
        "Final Answer:\n1994"
    )
    action, action_input = get_action_and_input(llm_output)
    assert action == "Final Answer"
    assert action_input == "1994"


def test_get_final_answer_multiline() -> None:
    """Test getting final answer that is multiline."""
    llm_output = (
        "Thought: I need to search for NBA\n"
        "Action: Search\n"
        "Action Input: NBA\n"
        "Observation: founded in 1994 and 1993\n"
        "Thought: I can now answer the question\n"
        "Final Answer: 1994\n1993"
    )
    action, action_input = get_action_and_input(llm_output)
    assert action == "Final Answer"
    assert action_input == "1994\n1993"


def test_bad_action_input_line() -> None:
    """Test handling when no action input found."""
    llm_output = "Thought: I need to search for NBA\n" "Action: Search\n" "Thought: NBA"
    with pytest.raises(OutputParserException):
        get_action_and_input(llm_output)


def test_bad_action_line() -> None:
    """Test handling when no action input found."""
    llm_output = (
        "Thought: I need to search for NBA\n" "Thought: Search\n" "Action Input: NBA"
    )
    with pytest.raises(OutputParserException):
        get_action_and_input(llm_output)


def test_from_chains() -> None:
    """Test initializing from chains."""
    chain_configs = [
        Tool(name="foo", func=lambda x: "foo", description="foobar1"),
        Tool(name="bar", func=lambda x: "bar", description="foobar2"),
    ]
    agent = ZeroShotAgent.from_llm_and_tools(FakeLLM(), chain_configs)
    expected_tools_prompt = "foo: foobar1\nbar: foobar2"
    expected_tool_names = "foo, bar"
    expected_template = "\n\n".join(
        [
            PREFIX,
            expected_tools_prompt,
            FORMAT_INSTRUCTIONS.format(tool_names=expected_tool_names),
            SUFFIX,
        ]
    )
    prompt = agent.llm_chain.prompt
    assert isinstance(prompt, PromptTemplate)
    assert prompt.template == expected_template