File size: 3,590 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "1f83f273",
   "metadata": {},
   "source": [
    "# SageMaker Endpoint Embeddings\n",
    "\n",
    "Let's load the SageMaker Endpoints Embeddings class. The class can be used if you host, e.g. your own Hugging Face model on SageMaker.\n",
    "\n",
    "For instructions on how to do this, please see [here](https://www.philschmid.de/custom-inference-huggingface-sagemaker). **Note**: In order to handle batched requests, you will need to adjust the return line in the `predict_fn()` function within the custom `inference.py` script:\n",
    "\n",
    "Change from\n",
    "\n",
    "`return {\"vectors\": sentence_embeddings[0].tolist()}`\n",
    "\n",
    "to:\n",
    "\n",
    "`return {\"vectors\": sentence_embeddings.tolist()}`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "88d366bd",
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip3 install langchain boto3"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "1e9b926a",
   "metadata": {},
   "outputs": [],
   "source": [
    "from typing import Dict, List\n",
    "from langchain.embeddings import SagemakerEndpointEmbeddings\n",
    "from langchain.llms.sagemaker_endpoint import ContentHandlerBase\n",
    "import json\n",
    "\n",
    "\n",
    "class ContentHandler(ContentHandlerBase):\n",
    "    content_type = \"application/json\"\n",
    "    accepts = \"application/json\"\n",
    "\n",
    "    def transform_input(self, inputs: list[str], model_kwargs: Dict) -> bytes:\n",
    "        input_str = json.dumps({\"inputs\": inputs, **model_kwargs})\n",
    "        return input_str.encode('utf-8')\n",
    "\n",
    "    def transform_output(self, output: bytes) -> List[List[float]]:\n",
    "        response_json = json.loads(output.read().decode(\"utf-8\"))\n",
    "        return response_json[\"vectors\"]\n",
    "\n",
    "content_handler = ContentHandler()\n",
    "\n",
    "\n",
    "embeddings = SagemakerEndpointEmbeddings(\n",
    "    # endpoint_name=\"endpoint-name\", \n",
    "    # credentials_profile_name=\"credentials-profile-name\", \n",
    "    endpoint_name=\"huggingface-pytorch-inference-2023-03-21-16-14-03-834\", \n",
    "    region_name=\"us-east-1\", \n",
    "    content_handler=content_handler\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fe9797b8",
   "metadata": {},
   "outputs": [],
   "source": [
    "query_result = embeddings.embed_query(\"foo\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "76f1b752",
   "metadata": {},
   "outputs": [],
   "source": [
    "doc_results = embeddings.embed_documents([\"foo\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fff99b21",
   "metadata": {},
   "outputs": [],
   "source": [
    "doc_results"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "aaad49f8",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  },
  "vscode": {
   "interpreter": {
    "hash": "7377c2ccc78bc62c2683122d48c8cd1fb85a53850a1b1fc29736ed39852c9885"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}