File size: 4,030 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "e49f1e0d",
   "metadata": {},
   "source": [
    "# OpenAI\n",
    "\n",
    "This notebook covers how to get started with OpenAI chat models."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "522686de",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from langchain.chat_models import ChatOpenAI\n",
    "from langchain.prompts.chat import (\n",
    "    ChatPromptTemplate,\n",
    "    SystemMessagePromptTemplate,\n",
    "    AIMessagePromptTemplate,\n",
    "    HumanMessagePromptTemplate,\n",
    ")\n",
    "from langchain.schema import (\n",
    "    AIMessage,\n",
    "    HumanMessage,\n",
    "    SystemMessage\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "62e0dbc3",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "chat = ChatOpenAI(temperature=0)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "ce16ad78-8e6f-48cd-954e-98be75eb5836",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "AIMessage(content=\"J'aime programmer.\", additional_kwargs={}, example=False)"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "messages = [\n",
    "    SystemMessage(content=\"You are a helpful assistant that translates English to French.\"),\n",
    "    HumanMessage(content=\"Translate this sentence from English to French. I love programming.\")\n",
    "]\n",
    "chat(messages)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "778f912a-66ea-4a5d-b3de-6c7db4baba26",
   "metadata": {},
   "source": [
    "You can make use of templating by using a `MessagePromptTemplate`. You can build a `ChatPromptTemplate` from one or more `MessagePromptTemplates`. You can use `ChatPromptTemplate`'s `format_prompt` -- this returns a `PromptValue`, which you can convert to a string or Message object, depending on whether you want to use the formatted value as input to an llm or chat model.\n",
    "\n",
    "For convenience, there is a `from_template` method exposed on the template. If you were to use this template, this is what it would look like:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "180c5cc8",
   "metadata": {},
   "outputs": [],
   "source": [
    "template=\"You are a helpful assistant that translates {input_language} to {output_language}.\"\n",
    "system_message_prompt = SystemMessagePromptTemplate.from_template(template)\n",
    "human_template=\"{text}\"\n",
    "human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "fbb043e6",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "AIMessage(content=\"J'adore la programmation.\", additional_kwargs={})"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])\n",
    "\n",
    "# get a chat completion from the formatted messages\n",
    "chat(chat_prompt.format_prompt(input_language=\"English\", output_language=\"French\", text=\"I love programming.\").to_messages())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c095285d",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}