File size: 4,226 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "00695447",
   "metadata": {},
   "source": [
    "# How to add Memory to an LLMChain\n",
    "\n",
    "This notebook goes over how to use the Memory class with an LLMChain. For the purposes of this walkthrough, we will add  the `ConversationBufferMemory` class, although this can be any memory class."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "9f1aaf47",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.memory import ConversationBufferMemory\n",
    "from langchain import OpenAI, LLMChain, PromptTemplate"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4b066ced",
   "metadata": {},
   "source": [
    "The most important step is setting up the prompt correctly. In the below prompt, we have two input keys: one for the actual input, another for the input from the Memory class. Importantly, we make sure the keys in the PromptTemplate and the ConversationBufferMemory match up (`chat_history`)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "e5501eda",
   "metadata": {},
   "outputs": [],
   "source": [
    "template = \"\"\"You are a chatbot having a conversation with a human.\n",
    "\n",
    "{chat_history}\n",
    "Human: {human_input}\n",
    "Chatbot:\"\"\"\n",
    "\n",
    "prompt = PromptTemplate(\n",
    "    input_variables=[\"chat_history\", \"human_input\"], \n",
    "    template=template\n",
    ")\n",
    "memory = ConversationBufferMemory(memory_key=\"chat_history\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "f6566275",
   "metadata": {},
   "outputs": [],
   "source": [
    "llm_chain = LLMChain(\n",
    "    llm=OpenAI(), \n",
    "    prompt=prompt, \n",
    "    verbose=True, \n",
    "    memory=memory,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "e2b189dc",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
      "Prompt after formatting:\n",
      "\u001b[32;1m\u001b[1;3mYou are a chatbot having a conversation with a human.\n",
      "\n",
      "\n",
      "Human: Hi there my friend\n",
      "Chatbot:\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished LLMChain chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "' Hi there, how are you doing today?'"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "llm_chain.predict(human_input=\"Hi there my friend\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "a902729f",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
      "Prompt after formatting:\n",
      "\u001b[32;1m\u001b[1;3mYou are a chatbot having a conversation with a human.\n",
      "\n",
      "\n",
      "Human: Hi there my friend\n",
      "AI:  Hi there, how are you doing today?\n",
      "Human: Not to bad - how are you?\n",
      "Chatbot:\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished LLMChain chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "\" I'm doing great, thank you for asking!\""
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "llm_chain.predict(human_input=\"Not too bad - how are you?\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ae5309bb",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}